Department of Statistics Central University of Rajasthan

(REVISED SYLLABUS 2022)

Integrated M. Sc. STATISTICS M. Sc. STATISTICS

for

Proposed to be implemented for the batches 2020 onwards.

(Note: The Integrated M. Sc. Semester VII to X will be same for M. Sc. Semester I to IV. However, the same may be offered together or separately as required.)

Department of Statistics School of Mathematics Statistics and Computational Sciences Central University of Rajasthan Bandarsindri, NH-8, Kishangarh, Ajmer, Rajasthan-305801

Programme Objective:

The main objective of Integrated M.Sc. in Statistics programme in CURaj is to facilitate higher secondary passed students to learn, practice and make career in the art of information analysis for the purpose of decision making on concerned problems. Analysis can be done by using well accepted principle and scientific methods developed in Statistics. As these students have chosen the statistics at an early stage of their learning, they have an opportunity of better understanding fundamentals of statistics and equip themselves to work as a professional statistician. Training in statistical computing will enhance their job opportunities and professional skills.

Learning outcome of this program,

Post Graduates of the Integrated M.Sc. Statistics program will be able to:

- Have a broad background in Statistics, an appreciation of how its various sub disciplines are inter-related, acquire an in-depth knowledge about topics chosen from those offered through the department.
- Develop the ability to effectively and aptly use techniques of representing and dealing with random phenomenon by using basic principles and statistical concepts.
- Learn art of gathering information by sampling and designing experiments and analyzing it and also to be able to assist practitioners for drawing inferences by using their experimental outcomes.
- Be able to independently read statistical literatures including survey articles, scholarly books, and online sources.
- Have the versatility to work effectively in a broad range of companies (including R&D sectors of financial, pharmaceutical, market research, software development companies, consultancy, etc.), or analytic, scientific, government, financial, health, teaching and other positions or continue for higher education.

0,0

T

Revised Course Outline

Integrated M.Sc. Statistics/ M.Sc. Statistics

Semester VII/I

Course Code	Title	Credit	Hours per week		
course coue	The	Credit	Lectures	Tutorial	Practical
STA 401	Measure and Probability Theory	4	3	0	1
STA 402	Distribution and Decision Theory	4	3	0	1
STA 403	Sampling Theory and Methods	4	3	0	1
STA 404	Real Analysis and Linear Algebra	4	3	0	1
STA 405	Research Methodology	3	2	1	0
STA 481	Statistical Computing using R	3	1	0	2
STA 482	Self-Learning-I	2	2	0	0

Semester VIII/II

Course Code	Title	Credit	Hours <mark>p</mark> er week			
	The	Creun	Lectures	Tutorial	Practical	
STA 406	Theory of Estimation and Testing of Hypothesis	4	3	0	1	
STA 407	Regression Analysis	4	3	• 0	1	
STA 408	Stochastic Processes	45	3	0	1	
STA 483	Introduction to Python	5.4~	3	0	1	
	Elective Paper -I	3	2	0	1	
	Elective Paper -II	3	2	0	1	
STA 484	Self-Learning-II	2	2	0	0	

Semester IX/III

Course Code	Title	Credit	Hours per week			
Course Code	Gille	Creun	Lectures	Tutorial	Practical	
STA 501	Time Series and Forecasting	4	3	0	1	
STA 502	Advanced and Applied Multivariate	4	3	0	1	
STA 503	Planning and Analysis of Industrial Experiments	4	3	0	1	
	Elective Paper -3	3	2	0	1	
	Elective Paper -4	3	2	0	1	
	Open Elective	3	2	0	1	
STA 581	Self-Learning-III	2	2	0	0	

.

0

.

Semester X/IV							
Course	Title	Credit	Hours per week				
Code			Lectures	Tutorial	Practical		
STA 582	Major Project	20	-	-	-		

Elective Courses for Semester VIII/II

Course Code	T:41a	Cradit	Hours per week			
Course Code	Title	Creat	Lectures	Tutorial	Practical	
STA 521	Data Mining	3	3	0	0	
STA 522	National Development Statistics	3	3	0	0	
STA 523	Principal and Practices of Insurance	3	3	0	0	
STA 524	Survival Analysis	3	3	0	0	
STA 525	Statistical Methods for Bio-Computing	3	3	0	0	
STA 526	Computer Intensive Statistical Methods	3	3	0	0	
STA 527	Reliability Analysis	3	3	0	0	
STA 528	Extreme Value Theory	3	3	0	0	

Course code from STA 521-STA 527 refer to elective courses for VIII semester (Integrated M.Sc Statistics)

			A Hours per week			
Course Code	Title 2009	Credit	Lectures	Tutorial	Practical	
STA 541	Econometrics	3	3	0	0	
STA 542	Life and Health Insurance	3	3 7	0	0	
STA 543	Statistical Quality Management	3	3	0	0	
STA 544	Machine Learning	3	3	0	0	
STA 545	Bayesian Inference	3	3	0	0	

Elective Courses for Semester IX/III

Course code from STA 541-STA 545 refers to elective courses for IX Semester (Integrated M.Sc. Statistics)

۲

۲

.

Course Name: Measure and Probability Theory Course Code: STA 401			401		
Teaching S	cheme	Examination Scheme		Credit Allot	ted
Theory: 4 h	ours/ week	End Semester Examinat	ion: 60 Marks	Theory: 3	
		Internal Assessment: 20	+20 Marks		
Tutorial: 2 h	nours/ week	Total: 100 Marks		Practical: 1	
				Total: 4	
Course Pre	-requisites: Stud	lent must have knowledge	e of		
1. Basic p	orobability				
2. Conver	gence of sequen	ce and series	VAAAA		
			ITV		
Course Ob	jective:	NERO	I Y ON		
1. The m	ain purpose is t	o introduce Probability	Theory under axio	matic approad	ch and develop
further	theory and conc	epts including the limit be	ehaviours.	4	
<u> </u>			h.,		
Course Out	t comes: After co	mpletion of this course st	udent will able to		4
1. Recogi	nize the concept	of field, sigma field, prob	ability space, proba	bility measure	e
2. Unders	tand the concept	of convergence of sequer	ices of random vari	ables.	
3. Apply	various inequalit	les to solve complex stati	stical problems.		
4. List var	different probability	dom variables.	r colving different r	nothemotical	roblama
J. Apply		inty theorems and laws to.	r sorving unreferit r	namematical	Stoblems.
Course Cou	ntent.			•	
Unit No.	Unit Contents	Im 1	143 5		No. of Hours
	Classes of sets	, field and sigma fields.	limit of sequences	s of subsets.	
	sigma field ge	nerated by a class of sul	bsets, Borel field,	Borel sigma	9
1.	field. Measure	, probability measure, p	robability space, r	properties of	20
	probability m	easure-continuity, mixtu	re of probability	measures.	
	Lebesgue and l	Lebesgue - Steltjes measu	res on R.	A	
	Distribution fu	nctions of discrete rvs, o	continuous and mix	xed type rv,	
	decomposition	of a df. Expectation of r	v and its properties	s. Properties	
2.	of Expectation	s. Characteristic function	n, simple properti	ies.Inversion	15
	theorem and	uniqueness property. In	equalities: Jensen	's, Markov,	
	Chebychevs, H	olders and Lyapounov ine	equalities with its a	pplications.	
	Independence	of two events and n(>2) e	vents, sequence of	independent	
	events. Monot	one convergence theorer	n, Fatous Lemma,	Dominated	
	Convergence t	heorem, Borel - Cantelli	Lemma, and their	applications.	
	Convergence	of sequence of randor	n variables, Conv	vergence in	
3.	distribution, o	continuity theorem (Sta	atement only), A	lmost sure	15
	convergence, a	a characterizing property	, convergence in	probability,	
	uniqueness of	limit, Yule Slutsky re	esults and preserv	ation under	
	continuous tra	insform.(Statements only	y), convergence in	n r th mean,	
	interrelationshi	ps.			

4.	Weak and Strong laws of large numbers, Kolmogorov's three theorem for almost sure convergence (Statement only), Den Laplace, Liaponove's, Lindeberg-Feller theorems on CLT (Sta only).	series noivre- tement	10		
Assessment					
CIA	Continuous Internal Assessment I	Writter	ı		
	Continuous Internal Assessment II Written/Assignme Viva/Presentation				
ESE	End Semester Examination	Writter	l		
Reference/	Text Books:				
1.	Bhat, B. R. (2007). Modern probability theory. New Age Internat	ional.			
2.	Rao, B. P. (2009). A first course in probability and statistics. Scientific.	World			
3.	3. Meyer, P.A. (1970) An Introduction to Probability and Its Applications. PHI				
4.	Ross, S. (2010). A first course in probability. Pearson.	1			
5.	Gun, A. M., Gupta, M. K., & Dasgupta, B. (2003). An out	line of			
	statis <mark>ti</mark> cal theory. World Press Pvt Limited.	P			
6.	Rohatgi V.K & A.K. MD. EhsanesSaleh (2001): An Introduc	tion to			
	Probability Theory and Mathematical Statistics, 2nd. John Wil	ey and			
	Sons.				

Course Name: Distribution and Decision Theory Course Code: STA 402			Code: STA 402	
Teaching S	cheme	Examination Scheme	Credit A	llotted
Theory: 4 h	ours/ week	End Semester Examination: 60 Marks	Theory: 3	3
		Internal Assessment: 20+20 Marks		
Practical: 2	hours/ week	Total: 100 Marks	Practical	1
			Total: 4	
Course Dre	magnicitae. St	udent must have knowledge of		
1 Stat	tistical inference			
2 Pro	bability distrib	utions		
2. 110	outility uistile			
Course Ob	jective:			
1. Cor	ncept developm	ent and visualization of Decision theory	. Als <mark>o K</mark> no	wledge of Non
para	ametric statistic	e and related tests.		
Course Ou	tcomes: After	completion of this course student will ab	le to	
1. Kno	ow about Statis	stical Decision Problem and different	decision i	rules, priors and loss
fun	ction.			20
2. Bas	ic idea of Sequ	ential procedures.	b /1	
3. Ap	plication of no	onparametric statistics and related test.	-	T
Course Co	ntent:			5
Unit No	Unit Content		7	No of Hours
1.	Weibull Pa	reto lognormal Laplace Cauchy	logistic	15
	Ravleigh dis	tribution their properties and applica	tions	
	Compound	truncated and mixture dist	ibutions.	
	Convolution	s of two distributions.		•
	Order statist	ics: their distributions and properti	es. Joint.	
	marginal an	d conditional distribution of order	statistics.	
	The distribu	tion of sample range and sample med	lian.	
	Extreme v	alues and their asymptotic dis	stribution	15
	(statement o	nly) with applications.	14	E
2.	Non-central	chi-square, t and F distributions (pdf with	15
	proof). 🛛 📢	A		7 Y
	Bivariate dis	stributions, bivariate exponential dis	tribution,	2
	bivariate no	rmal distribution, marginal and co	nditional	1 2
	distribution,	mgf, some properties. Plotting of	bivariate	
	normal de	ensity function. Bivariate ex	ponential	
	distributions			
3.	Basic eleme	nts of Statistical Decision Problem.	Expected	15
	loss, decisio	on rules (nonrandomized and rand	omized),	
	decision pr	inciples (conditional Bayes, free	quentist),	
	inference as	decision problem, optimal decision r	ules.	
4.	Bayes and	minimax decision rule. Admissi	bility of	15
	minimax rul	es and Bayes rules, prior distribution	n, and its	
	types. Post	erior distribution, Loss functions	, Bayes	
	estimator.			

Assessmen	t:	
CIA	Continuous Internal Assessment I	Written
	Continuous Internal Assessment II	Written/Assignment/
		Viva/Presentation
ESE	End Semester Examination	Written
Reference	Text Books:	
1.	Berger, J. O. (2013). Statistical decision theory and	
	Bayesian analysis. Springer Science & Business Media.	
2.	Bernardo, J. M., & Smith, A. F. (2009). Bayesian theory	
	(Vol. 405). John Wiley & Sons.	
3.	Robert, C. P. (2007). The Bayesian choice: from decision-	
	theoretic foundations to computational implementation	
	(Vol. 2). New York: Springer.	
4.	Ferguson, T. S. (2014). Mathematical statistics: A	
	decision theoretic approach (Vol. 1). Academic press.	Y_
5.	Casella, G., & Berger, R. L. (2021). Statistical inference.	0,
	Cengage Learning.	121
6.	Rohatgi, V. K., & Saleh, A. M. E. (2015). An	3
	introduction to probability and statistics. John Wiley &	P
	Sons	

Course Name: Sampling Theory and methods Course Code		: STA 403	
Teaching Scheme	Examination Scheme	Credit Allo	tted
Theory: 4 hours/ week	End Semester Examination: 60 M	arks Theory: 3	
	Internal Assessment: 20 + 20 Mar	·ks	
Practical: 2 hours/ week	Total: 100 Marks	Practical: 1	
		Total: 4	
Course Pre-requisites: S	tudent must have knowledge of		
1. Descriptive Statis	stics		
2. Probability and p	robability distributions		
3. Statistical Inferen			
Course Objective: After	successfully completing this course	students should ordina	rily expect to be able
to:	successfully completing this course	, students should oldina	
1. Describe differen	t types of population approaches.		
2. Describe differen	t methods of sampling designs	-	
3. Describe differen	t methods of estimation under doub	le sampling scheme	
4. Describe no <mark>n-</mark> san	pling errors in a sample survey	Las and	
Course Outcomes: After	completion of this course student v	vill able to	
1. Understand the problems related	concepts of super population, va	rious standard samplin	g designs and solve
2. Understand the	con <mark>cepts of unequal probability sa</mark>	mpling, PPS sampling	(PPSWOR/WR) and
solve prob <mark>le</mark> ms re	elated to them.		
3. Understand the c solve problems re	once <mark>pts of double</mark> sampling, metho	ods of estimation under	double sampling and
4. Understand the c	oncepts of cluster sampling, two-s	tage sampling and solv	e problems related to
5. Understand the n	on-sampling errors and handling th	ne non-response in sam	ple surveys and solve
related problems.	6		
	2009	Ster 1	_
Course Content:			
Unit No. Unit Conte	nts	12/1	No. of Hours
Fixed popu	lation and super-population approa	ches. Distinct features	(
of finite po	pulation sampling, Review of bas	ic methods of simple	15
1. random san	ipling and stratified random sampling	1g.	15
estimators a	long with basic statistical propertie	s exercises	
Unequal pr	obability sampling: PPSWR/WO	R methods (including	
Lahiri's sch	neme) and Des-Raj estimator, Murth	ny estimator (for n=2).	
2. Horvitz T	hompson Estimator of finite p	opulation total/mean,	17
Expression	for Variance (HTE) and its unbias	sed estimator, Issue of	
non-negativ	ve variance estimation, exercises.	notion for actimation	
concept of	double sampling two-phase set	ampling stratification	
3. estimator.	ratio, product and regression e	estimators with their	13
properties	under double sampling, Some	unbiased ratio type	
estimators f	or population mean, exercises.		

4.	4. Review of cluster sampling (equal cluster size), cluster sampling (unequal cluster size), concept of two-stage sampling, non-sampling error with special reference to non-response problems and its treatments, exercises.				
Assessment:					
CIA	Continuous Internal Assessment I	Written			
	Continuous Internal Assessment II	Written/Ass	signment/		
		Viva/Preser	ntation		
ESE	End Semester Examination	Written			
Reference/ 7	Text Books:				
1.	Cochran, W.G. (2007): Sampling Techniques, Third Edition Delhi.	n, Wiley Indi	a Pvt. Ltd., New		
2.	Murthy, M. N. (1977): Sampling Theory and Methods, S Kolkata.	Statistical Pu	blishing Society,		
3.	 Cochran, W.G.(2007): Sampling Techniques, Third Edition, Wiley India Pvt. Ltd., New Delhi. 2. Murthy, M. N. (1977): Sampling Theory and Methods, Statistical Publishing Society, Kolkata. 				
4.	Singh, D. and Chaudhary, F. S. (1986): Theory and Analysi Wiley Eastern Ltd., New Delhi.	is of Sample	Survey Designs,		
5.	RaghunathArnab (2017): Survey Sampling Theory and A Elsevier.	pplications,	Academic Press,		
6.	Mukhopadhyay P (2008): Theory and methods of survey san New Delhi.	npling. Prenti	ce-Hall of India,		
7.	Latpate, R., Kshirsagar, J., Gupta V. and Chandra, G. (2021). Springer.	Advanced Sa	mpling Methods,		
E-Resources		R/S			
1.	https://nptel.ac.in/courses				
2.	http://mospi.nic.in/	1			
	ने जस्वनावधीतमस्व	Ta Ta			

Course Na	me: Real A	nalysis and Linear Algebra	Course Cod	e: STA 404	
Teaching So	cheme	Examination Scheme	Credit All	otted	
Theory: 4 ho	ours/ week	End Semester Examination: 60 M	Aarks Theory: 4		
		Internal Assessment: 20 + 20 Ma	urks		
		Total: 100 Marks	Total: 4		
Course Pre-	-requisites: S	tudent must have knowledge of			
1. Set 7	Theory				
2. Basi	c of Abstract	Algebra			
3. Basi	c concept of	calculus			
		- DSIT			
Course Obj	ective:	NEROIT			
1. The	main purpose	e is to provide mathematical found	ation for statistics cours	es to enhance their	
knov	wledge in Rea	al Analysis and Linear algebra.	4		
0 0 1	1.0				
Course Out	comes: After	completion of this course student	will able to		
I. Rela	ite applicabili	ty of real analysis and linear algeb	ra in the various discipl	ines of statistics	
2. Und	erstand speci	al matrices, their properties and ap	plications in statistics.		
3. Emp	oloy the result	s from real analysis to solve vario	as problems of probabil	ity theory.	
4. App	ly matrix the	bry for solving advanced statistical	problems.	Z	
5. Use	theory of stat	ionary values for optimizing comp	lex objective functions.		
0 0			5	•	
Course Con	tent:		A S		
Unit No.	Differentiet	nts		No. of Hours	
	Differential	on of derivative computation of st	variables, geometric		
	annligation				
1.	theorem on	15			
	infinite Toy	afinite Taylor series I 'Hospital Rule, Maxima Minima Leibniz			
	Theorem	7/			
	Riemann In	tegration and its elementary prope	ties	1	
	Integrability	of functions with finitely many p	oints of discontinuity	/	
	Mean-value	theorem for Riemann integration	Fundamental theorem		
2	of integral	calculus computation of son	r undamental integrals	15	
2.	Integration by parts and change of variable theorem. Integration of				
	order of				
	integration				
	Matrix of I	inear Transformation in different h	ases Similar Matrices		
	Annihilatin	polynomials. Minimal polynom	al of a linear operator		
3.	Algebraic a	nd Geometric Multiplicity Figer	space. Diagonalizable	15	
	linear transf	formation. Tringularization	Space, Diagonalizable		
	Functions	of several variables Maxima-n	ninima. Inner product		
4.	spaces or	honormal basis. Ouadratic	forms, reduction and	15	
	spaces, or	anonomium ousis. Quiumano	ioning, readenon and		

	classification of quadratic forms, positive definite quadratic form,	
	Rank and signature of quadratic form.	
Assessment	:	
CIA	Continuous Internal Assessment I	Written
	Continuous Internal Assessment II	Written/Assignment/
		Viva/Presentation
ESE	End Semester Examination	Written
Reference/	Text Books:	
1.	Searle, S. R. (1982). Matrix Algebra Useful for Statistics; John	
	Wiley, New York.	
2.	RamachandraRao, A. and Bhimasankaram, P. (1992): Linear	
	Algebra, Tata McGraw hill.	
3.	Trench William (2003). Introduction to Real Analysis, Pearson	
	Education 02	
4.	Krishnamurthy V., Mainra V.P. and Arora J. L. (2009) An	
	introduction to Linear Algebra, East-West Press Pvt Ltd	
5.	Rudin, W. (1985). Principles of Mathematical Analysis, McGrawhill,	
	New York.	
6.	Malik, S.C. and Arora, S. (1998). Mathematical Analysis, New Age,	
	New Delhi.	
7.	Bartle, R.G. (1975) The Elements of Real Analysis, 2/e, John Wiley.	
8.	Strang, G. (1980). Linear Algebra and its Application, 2nd edition,	12
	Academic Press, LondonNew York.	<i>.</i>
9.	Trench William (2003). Introduction to Real Analysis, Pearson	
	Education 2009	

Course Name: Research Methodology Course Code: STA			TA 405		
Teaching Sc	iching Scheme Examination Scheme Credit Allotted			ted	
Theory: 4 ho	ours/ week	End Semester Examination	: 60 Marks T	heory: 3	
		Internal Assessment: 20 + 2	20 Marks		
		Total: 100 Marks	Т	otal: 3	
Course Pre-	requisites: S	tudent must have knowledge	of		
1. Sam	ple survey				
2. Stati	stical method	s, applied statistics			
		-000			
Course Obj	ective:				
1. To p	rovide scienti	fic approaches to develop the	domain of human kr	nowledge th	nrough empirical
studi	ies.				
2. To e	nable the stud	ent researchers to understand	basic concepts and a	spects relat	ted to research, data
colle	ection, analyse	es and interpretation	2		
Course Out	comes: After	completion of this course stu	dent will able to	Zo	
1. Und	erstanding of	research problem and research	ch designs.		<u>L</u>
2. Deve	eloped <mark>a</mark> clear	understanding of different m	ethods of data collect	tion	
3. Cons	struct <mark>a q</mark> uesti	onnaire		5	
4. Proc	essin <mark>g a</mark> nd an	aly <mark>sis of d</mark> ata		5	
5. Inter	pretin <mark>g</mark> the st	atis <mark>tical re</mark> sults and report wri	ting.	-	
		7 10			
Course Con	tent: 🦲 🛛		MA S		
Unit No.	Unit Conter	nts	2 Parts	•	No. of Hours
	Introduction	: Meaning, objection and m	otivat <mark>ion in research</mark>	, types of	
	research, r	Research			
1.	Methods versus Methodology, Research and Scientific Method,			10	
	Research Process, Criteria of Good Research. Research problems:				
	definition, selection and necessity of research problems.				
	Research Pr	oblem, Selecting the Proble	m, Necessity of Def	ining the	
	Problem, Technique Involved in Defining a Problem, An Illustration.				
	Place of the literature review in research, Bringing clarity and focus to				
2.	research problem, Improving research methodology, Broadening			roadening	10
	knowledge l	base in research area, Review	of the literature, sear	ching the	
	existing literature, reviewing and developing a theoretical as well				
	conceptual f	ramework. Writing about the	literature reviewed		
	Meaning of	Research Design, Need for I	Research Design, Fea	tures of a	
2	Good Desi	gn, Important Concepts R	elating to Research	Design,	10
5.	Different Research Designs, Basic Principl		ples of Experimental	Designs,	10
	Important E	xperimental Designs.			
	Survey Me	thodology and Data Collec	tion, inference and	error in	
4.	surveys, the	target populations, samplin	g frames and covera	age error,	15
	methods of	data collection, non-respon	se, questions and a	nswers in	
	•				

	surveys Develop a questionnaire				
	surveys, Develop a questionnaire.				
	Processing Data Analysis and Interpretation: Review of vario	bus			
	techniques for data analysis covered in core statistics papers, technique	ies			
	of interpretation, precaution in interpretation. Different steps in writi	ng			
	report, layout of the research report.				
		·			
Assessment	t:				
CIA	Continuous Internal Assessment I	Written			
	Continuous Internal Assessment II Written/Ass				
		Viva/Presentation			
ESE	SE End Semester Examination Written				
	PSITV				
	IN ENOTION				
Reference/	Text Books:				
1.	Kothari, C.R. (2015). Research Methodology: Methods and				
	Techniques, 3rd Edition reprint, New Age International Publishers.				
2.	Kumar, R. (2011). Research Methodology: A Step-by-Step Guide for				
	Beginners, SAGE publications.				
3.	Cochran, W.G. and Cox, G.M. (1959). Experimental Design. Asia				
	Publishing House.				

Course Na	nme: Statistic	cal Computing using R	Cou	irse Code: S	TA 481	
Teaching Se	cheme	Examination Scheme		Credit Allot	tted	
Theory: 2 ho	ours/ week	End Semester Examination	n: 60 Marks	Theory: 3		
		Internal Assessment: 20 +	20 Marks			
Practical: 21	nours/ week	End Semester Examination	n: 100 Marks	Practical: 1		
				Total: 4		
Course Pre-	- requisites: St	udent must have knowledge	of			
1. Intro	oduction to R,	control statement in r.				
2. App	lied statistics,	linear model, testing of hype	othesis and ANOV	А.		
Course Obj	ective:	NERS	IYON			
After succes	sfully complet	tin <mark>g th</mark> is course, students sh	ould ordinarily exp	ect to be able	e to use R for Writing	
functions, st	atistical progra	amming, computation graph	ics, statistical mod	eling and ana	lysis of different type	
of statistical	data by using	R in an effective way.	2			
		S A		Yal		
Course Out	comes: After o	comp <mark>letion of this c</mark> ourse stu	dent will able to	03	V	
1. Exp	lain ab <mark>ou</mark> t Var	iabl <mark>es, Co</mark> nstants and Data T	ypes in R Program	ming		
2. Dese	cribe R functio	ons <mark>, crea</mark> te a user-defined fur	nction in R	2		
3. Perf	orm a <mark>si</mark> mulati	on study.		7 4		
4. Con	npute advance	sta <mark>tistical</mark> analysis and inter	pret th <mark>e</mark> results.	~		
		4	Le Ca			
Course Con	itent: 🦲 🏅		1 M. 5			
Unit No.	Unit Conten	its	ATT PAR	•	No. of Hours	
	Review of in	ntroduction tor r, functions,	basic mathematica	l operations,		
1	variables, da	variables, data types, vectors, conclusion, advanced data structures, data				
1.	frames, lists	s, matrices, arrays, classe	rogram <mark>mi</mark> ng	0		
	structures, co	ontrol statements, loops.				
2	Descriptive	Statistics, Correlation an	d Covariance, si	mple linear	15	
۷.	regression, te	esting of hypothesis, ANOV	15			
	Numerical	nethods- Root finding, f	ixed point iteration	on, Newton		
3.	Raphson met	thod, secant method, bisection	on method, numeri	cal iteration,	12	
	Trapezoidal	rule – Simpson's rule, adapt	ive quadrature.			
	Simulation:	Simulating iid uniform sat	mples, congruentia	al generator,		
4	seeding, sim	ulating, discrete random v	variable, inversion	method for	10	
4.	continuous r	random variables, rejection method, generation of normal			10	
	variates: reje	ction with exponential envel	lope, Box-Muller a	lgorithm.		
Assessment	:					
CIA	Continuou	s Internal Assessment I			Written	
	Continuou	s Internal Assessment II			Written/Assignment/	
					Viva/Presentation	

ESE	End Semester Examination	Written
Reference/ T	ext Books:	
1.	Kundu, D. (2004). Statistical computing: Existing methods and recent	
	developments. Narosa publishing house, New Delhi.	
2.	Monahan, J. F. (2011). Numerical methods of statistics. Cambridge	
	University Press.	
3.	Tattar, P. N., Ramaiah, S., & Manjunath, B. G. (2016). A Course in	
	Statistics with R. John Wiley & Sons.	
4.	Lander, J. P. (2014). R for everyone: Advanced analytics and graphics.	
	Pearson Education.	
5.	Rizzo, M. L. (2019). Statistical computing with R. Chapman and	
	Hall/CRC.	
E-Resources		
1.	Matlof <mark>f,</mark> N. (2009). The art of R programming. http://heather.cs.	
	ucdavis. edu/~ matloff/132/NSPpart. pdf>. Acesso em, 1(03), 2018.	

Teaching Scheme Credit Allotted Theory: 4 hours/ week End Semester Examination: 60 Marks Theory: 3 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 2 hours/ week Total: 100 Marks Practical: 1 Course Pre-requisites: Student must have knowledge of Total: 4 Course Objective:	Course Nan	ne: Theory of	f Estimation and Testing of Hypothesis	Course Code: ST	A 406	
Theory: 4 hours/ week End Semester Examination: 60 Marks Theory: 3 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 100 Marks Practical: 1 Course Pre-requisites: Student must have knowledge of 1 1. Standard probability distribution Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recall various properties of estimators 3. Apply different methods of parameter estimation - 2. Recall various properties of estimators - 3. Apply different statistical test procedures for different testing of hypothesis problems - - - - 4. Compare different methods of parameter estimator - Course Contect: Unit No. Unit Contents No. of Hours No. of Hours <td colsp<="" td=""><td>Teaching Sc</td><td>heme</td><td>Examination Scheme</td><td>Credit Allotted</td><td></td></td>	<td>Teaching Sc</td> <td>heme</td> <td>Examination Scheme</td> <td>Credit Allotted</td> <td></td>	Teaching Sc	heme	Examination Scheme	Credit Allotted	
Internal Assessment: 40 Marks Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 4 Total: 4 Course Pre-requisites: Student must have knowledge of 1. 1. Standard probability distribution	Theory: 4 ho	urs/ week	End Semester Examination: 60 Marks	Theory: 3		
Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 4 Total: 4 Course Pre-requisites: Student must have knowledge of 1 Standard probability distribution Standard probability distribution Course Objective: 2 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Unit Contents No. of Hours 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares in theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method. 2. Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement of)). Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased testimator (UMVUE), Rao-Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Review of a test, Test function, Randomized and non-randomized tests, Mo			Internal Assessment: 40 Marks			
Total: 4 Course Pre-requisites: Student must have knowledge of 1. Standard probability distribution Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Unit Contents No. of Hours Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of a test, Test function, Randomized and non-randomized tests, Most powerful asymptotic normal (CAN) estimator. 3. Apply differences of random variables and their implications, unbiased test. Likelihood ratio test with its properties.	Practical: 2 h	ours/ week	Total: 100 Marks	Practical: 1		
Course Pre-requisites: Student must have knowledge of No. of 1. Standard probability distribution Standard probability distribution Course Objective:				Total: 4		
Course Pre-requisites: Student must have knowledge of 1. Standard probability distribution Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test procedures for different testing of hypothesis Course Content: Unit No. Unit Contents No. of Hours No. of Hours Interview of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyma factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares in enchod. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of convergences of random variables and their applications, Review of 15 Convergences of random variables and their applic						
1. Standard probability distribution Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test procedures for different testing of hypothesis problems 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Unit Contents No. of Hours Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 10 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator. 15<	Course Pre-	requisites: Stud	lent must have knowledge of			
Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test procedures for different testing of hypothesis problems 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. Blackwell and Lehmann-Scheffe theorems, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pe	1. Stand	dard probability	distribution			
Course Objective: 2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation						
2. The main purpose is to make an individual understand basic theoretical knowledge about fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Void Contents No. of Hours Outs Content: Course Content: Unit No. Unit Contents No. of Hours Iter is a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. Itera on squality and its attainment, Cramer-Huzurbazar theorem (statement only). Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao-Blackwell and Lehmann-Scheffe theorems and their app	Course Obje	ective:	- CITY			
fundamental principles of statistical inference. Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit Contents No. of Hours Scriteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares in theorem, Family of distributions admitting sufficient statistic. 10 1. Point estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 11 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 15 3. Statistical Hypothesis, critical region, types of errors, level of significance	2. The	main purpose is	to make an individual understand basic theoreti	cal knowledge about		
Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: No. of Hours Unit No. Unit Contents Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 10 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation-to MLE, Method of scoring and Newton-Raphson method. 11 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 15 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test with its properties. 10	funda	amental princip	les of statistical inference.			
Course Outcomes: After completion of this course student will able to 1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Unit Contents No. of Hours Reciption of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic, 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Likelihood ratio test with its properties.	~ ~ ~					
1. Recognize different methods of parameter estimation 2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test procedures for different testing of hypothesis problems 5. Analyze various real life data sets using tests of hypothesis Course Content: No. of Hours No. of Tieria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.	Course Outo	comes: After co	mpletion of this course student will able to			
2. Recall various properties of estimators 3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Visit Contents No. of Hours No. of the contents Visit Contents No. of the contents Visit Contents No. of Hours Ourse Content: Visit Contents Visit Contents No. of Hours Ourse Content: Visit Contents Visit Conten	I. Reco	ignize different	methods of parameter estimation			
3. Apply different statistical test procedures for different testing of hypothesis problems 4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: Unit No. Unit Contents No. of Hours Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. If the orem, family of distributions admitting sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao-Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10	2. Reca	Il various prope	erties of estimators			
4. Compare different statistical test through power comparison. 5. Analyze various real life data sets using tests of hypothesis Course Content: No. of Hours No. of Hours Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 2. Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Likelihood ratio test with its properties. 10	3. Appl	y different stati	stical test procedures for different testing of hyp	othesis problems		
S. Analyze various real file data sets using tests of hypothesis Course Content: No. of Hours Unit No. Unit Contents No. of Hours Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 10 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 10 2. Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 15 3. Est and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 10	4. Com	pare different s	tatistical test through power comparison.			
Course Content: No. of Hours Unit No. Unit Contents No. of Hours Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic. 10 1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. 10 2. Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 15 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 10	5. Anal	yze various rea	life data sets using tests of hypothesis	Ż		
Course Content:Unit ContentsNo. of HoursUnit No.Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic.101.Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.102.Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.103.Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10	C C		PRIF			
Unit No.Unit ContentsNo. of HoursCriteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic.101.Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.102.Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.153.Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10	Course Con	tent:	Max S		No. of	
Criteria of a good estimator: unbiasedness, consistency, efficiency and sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic.1.Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.10Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.15Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10	Unit No.		Unit Contents		No. of Hours	
sufficiency. Concept of mean squared error. Fisher-Neyman factorization theorem, Family of distributions admitting sufficient Statistic.1.Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.10Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.153.Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10		Criteria of	a good estimator: unbiasedness, consisten	cy, efficiency and		
1.Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.10Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.153.Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10		sufficiency.	Concept of mean squared error. Fisher-No	eyman factorization		
1. Point estimation, Maximum likelihood method (MLE), moments, Least squares method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method. Image: Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- 2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful 3. test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Likelihood ratio test with its properties.		theorem, Fam	ily of distributions admitting sufficient Statistic.		10	
method. Method of minimum chi-square and percentiles. Properties of maximum likelihood estimator (with proof). Successive approximation to MLE, Method of scoring and Newton-Raphson method.Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.15Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test.10Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10	1.	Point estimati	on, Maximum likelihood method (MLE), mor	nents, Least squares	10	
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		method. Method of minimum chi-square and percentiles. Properties of maximum				
Scoring and Newton-Raphson method.Cramer-Rao inequality and its attainment, Cramer-Huzurbazar theorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao- Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator.15Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test.10Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.10		likelihood est	imator (with proof). Successive approximation	to MLE, Method of		
 Craher-Rao hequality and its attainment, Craher-Huzuroaza meorem (statement only), Completeness and minimal sufficient statistic, Ancillary statistic, Basu theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao-Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 		Cramor Bao	ewion-Raphson method.	r theorem (statement		
 2. Only), completeness and minimal sufficient statistic, Functionary statistic, Dast theorem, Uniformly minimum variance unbiased estimator (UMVUE). Rao-Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 		only) Compl	eteness and minimal sufficient statistic Anci	llary statistic Basu		
2. Blackwell and Lehmann-Scheffe theorems and their applications, Review of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. 15 3. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 3. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 10		theorem Uni	formly minimum variance unbiased estimate	or (UMVUE) Rao-		
 Distribution and Dominan Scheric alcorenas and their applications, Techev of convergences of random variables and their implications, Delta method and its application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 	2	Blackwell an	d Lehmann-Scheffe theorems and their appli	cations Review of	15	
application, Asymptotic efficiency and asymptotic estimator, consistent asymptotic normal (CAN) estimator. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.		convergences	of random variables and their implications.	Pelta method and its		
 asymptotic normal (CAN) estimator. Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 		application,	Asymptotic efficiency and asymptotic es	timator, consistent		
 Statistical Hypothesis, critical region, types of errors, level of significance, power of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 		asymptotic no	rmal (CAN) estimator.	,		
 of a test, Test function, Randomized and non-randomized tests, Most powerful test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties. 		Statistical Hy	pothesis, critical region, types of errors, level of	significance, power		
3. test and Neyman-Pearson lemma. MLR family of distributions, unbiased test. 10 Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.	of a test, Test function, Randomized and non-randomized te		ests, Most powerful			
Uniformly most powerful test. Uniformly most powerful unbiased test. Likelihood ratio test with its properties.	3.	test and Ney	man-Pearson lemma. MLR family of distribut	tions, unbiased test.	10	
ratio test with its properties.		Uniformly mo	ost powerful test. Uniformly most powerful unbi	ased test. Likelihood		
		ratio test with	its properties.			

तमस्त

4.	Sequential estimation and testing, SPRT, OC curve, ASN function, Wald's equation and problems.					
5.	Confidence interval, confidence level, construction of confidence intervals using pivots, Determination of confidence intervals based on large and small samples, uniformly most accurate one sided confidence interval and its relation to UMP test for one sided null against one sided alternative hypotheses					
Assessment	•					
CIA	Continuous Internal Assessment I	Written				
	Continuous Internal Assessment II	Written/A Viva/Prese	ssignment/ entation			
ESE	ESE End Semester Examination RSITY Written					
Reference/	Text Books:					
1.	Casella, G., & Berger, R. L. (2021). Statistical inference. Cengage Learn	ing.				
2.	Mukhopadhyay, P. (2012). Theory of Probability. New Central Book Ag	ency.				
3.	Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R., & Rao, C. R. (1973). I statistical inference and its applications (Vol. 2, pp. 263-270). New York	L <mark>in</mark> ear :: Wiley.				
4.	Rohatgi, V.K. (1976): An Introduction to Probability Theory and Mather Statistics, Wiley Eastern	natical				
5.	Goon, A. M., Gupta, M. K., & Dasgupta, B. (2000). An Outline of Statis Theory, Vol. II.	tical				
6.	Hogg, R. V., & Craig, A. T. (1965). Introduction To Mathematical Statis Auflage. Macmillan.	ti <mark>cs</mark> 2.				
7.	Kale, B. K. (2005). A first course on parametric inference. Alpha Science Ltd	e Int'l				
8.	Lehmann, E. L., & Lehmann, E. L. (1986). Testing statistical hypotheses New York: Wiley.	s (Vol. 2).				

तेजरि-व

Teaching Scheme Examination Scheme Credit Allotted Theory: 3 hours/ week End Semester Examination: 60 Marks Internal Assessment: 20+20 Marks Theory: 3 Practical: 2 hours/ week End Semester Examination: 60 Marks Internal Assessment: 20+20 Marks Practical: 1 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Course Pre-requisites: Student must have knowledge of Total: 4 Practical: 1 2. Simple linear regression Student must have knowledge of Student must have knowledge of 3. Linear algebra Exponential family of distributions Student must have knowledge of 4. Exponential family of distributions Student must have knowledge of Student must have knowledge of 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Student models, generalized models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model for the real data. Student models. Student must have knowledge of Hours 3. Address practical problems and give a sound scientific interpretation to the results. Assess the model using standard criterions. Student for the fourt 5. Use standard statistical software to develop models and analyze data that arise form different fields.	Cour	se Name: Regress	ion Analysis	Course Code: STA	407
Allotted Theory: 3 hours/ week End Semester Examination: 60 Marks Theory: 3 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 4 Total: 4 Total: 4 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 4 Total: 4 Total: 4 Course Pre-requisites: Student must have knowledge of . . 1. Correlation . . . 2. Simple linear regression . . . 3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Asseesthe mo	Teaching S	Scheme	Examination Sch	eme	Credit
Theory: 3 hours/ week End Semester Examination: 60 Marks Theory: 3 Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 100 Marks Practical: 1 Total: 00 Marks Practical: 1					Allotted
Internal Assessment: 20+20 Marks Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 100 Marks Total: 4 Course Pre-requisites: tunust have knowledge of 1. 1. Correlation	Theory: 3 h	ours/ week	End Semester Exa	mination: 60 Marks	Theory: 3
Practical: 2 hours/ week Total: 100 Marks Practical: 1 Total: 4 Total: 4 Course Pre-requisites: Student must have knowledge of 1. 1. Correlation 3. 2. Simple linear regression 3. 3. Linear algebra 4. 4. Exponential family of distributions 5. Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. No. of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation, confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of residuals, residual plots. 1. Dummy variables and their use in regression a			Internal Assessme	nt: 20+20 Marks	
Total: 4 Course Pre-requisites: Student must have knowledge of 1. Correlation 2. Simple linear regression 3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Unit No. Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 1. Dummy variables and their use in regression ana	Practical: 2	hours/ week	Total: 100 Marks		Practical: 1
Course Pre-requisites: Student must have knowledge of 1. Correlation 2. Simple linear regression 3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, proteitorion interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of residuals, residual plots. 15 0. Wuricollinearity: Consequences, detection and remedies, ridge regression. 15 1. distribution frocedur					Total: 4
Course Pre-requisites: Student must have knowledge of 1. Correlation 2. Simple linear regression 3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Voit With Contents No. of Hours No. of student statistical software to develop models and analyze data that arise from different fields. Course Content: Unit No. Muticolinear estimation, space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for mortal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: dif					
1. Correlation 2. Simple linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Unit No. Unit Contents 1. Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator of quadratic forms for moral variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 Dummy variables and their use in regression analysis. Multicollinearity: Consequences, R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection	Course Pro	e-requisites: Stude	nt must have knowl	edge of	
 2. Simple linear regression 3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Theory of linear estimation, estimable function, multiple regression model, least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponent	1. Cor	relation			
3. Linear algebra 4. Exponential family of distributions Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Voint Contents Mo. of Hours 15 Outil Contents Unit No. Unit Contents No. of Hours Interval distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 1. Dummy variables and their use in regression analysis. 15 Outicals, residual plots. Dummy v	2. Sim	ple linear regressio	n		_
 4. Exponential family of distributions Course Objective: The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to Develop the linear predictive models and their extensions in nonlinear models, generalized models. Diagnose and apply corrections to some problems with the generalized linear model found in real data. Address practical problems and give a sound scientific interpretation to the results. Assess the model using standard criterions. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for moral variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family Multicollinearity concept of general	3. Line	ear algebra	PARS	ITV	_
Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Vontent: Vontent: Vontent Course Content: Unit No. Unit Contents No. of Hours 15 Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 Dummy variables	4. Exp	onential family of o	listributions		
Course Objective: 1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Tourse Content: Unit No. Unit Contents No. of Hours 15 Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimators. BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC,			N	A	
1. The main purpose is to provide the theoretical foundations for the Linear Estimation Theory and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Work of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator. BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection and remedies, ridge regression. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	Course Ob	jective:	V.	Ly LY	
and Regression Analysis. Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Tourse Content: Unit No. Unit Contents No. of Hours 1 Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 0 Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Yariable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabil	1. The	main purpose is to	provide the theore	tical foundations for the Linear Es	timation Theory
Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Volter Standard statistical software to develop models and analyze data that arise from different fields. Volter Standard statistical software to develop models and analyze data that arise from different fields. Volter Standard statistical software to develop models and analyze data that arise from different fields. Volter Standard statistical software to develop models and analyze data that arise from different fields. Volte standard statistical software to develop models and analyze data that arise from different fields. Volte standard statistical software to develop models and analyze data that arise from different fields. Volte standard statistical software to develop models and analyze data that arise from different fields. Interv of linear estimation, estimable function, multiple regression model, least squares estimator, BLUE, estimation space, entor space, Gauss-Markov theorem in linear estimation. Confidence interval estima	and	Regression Analys	is.		
Course Outcomes: After completion of this course student will able to 1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Voir the contents No. of Hours No. of Hours Intervention of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 1. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 1. Fundamental concept of generalized linear model (GLM), exponential family					
1. Develop the linear predictive models and their extensions in nonlinear models, generalized models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Volta to the results. No. of Hours Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 1. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. 15 2. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15	Course Ou	tcomes: After com	pletion of this cours	se student will able to	
models. 2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Visit Contents No. of Hours No. of Hours Interv of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	1. Dev	elop t <mark>h</mark> e linear pre	dictive models and	their extensions in nonlinear mod	lels, generalized
2. Diagnose and apply corrections to some problems with the generalized linear model found in real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Vois standard statistical software to develop models and analyze data that arise from different fields. Course Content: Vis standard statistical software to develop models and analyze data that arise from different fields. Vis standard statistical software to develop models and analyze data that arise from different fields. Course Content: Vis standard statistical software to develop models and analyze data that arise from different fields. Course Content: Vis standard statistical software to develop models and analyze data that arise from different fields. Vis standard statistical software to develop models and analyze data that arise from different fields. Vis standard statistical software to develop models and analyze data that arise from different fields. Vis standard statistical software to develop models and analyze data that arise from different fields. Theory of linear estimation, estimable function, multiple regression model, least squares estimator, BLUE, estimation space, error space, Gau	mod	lels.			
real data. 3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Vision of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	2. Dia	gnose and apply co	rrections to some p	oblems with the generalized linear	model found in
3. Address practical problems and give a sound scientific interpretation to the results. 4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: Voltation of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 1. Dummy variables and their use in regression analysis. 15 2. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	real	data.	4		
4. Assess the model using standard criterions. 5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: No. of Hours No. of Linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	3. Add	lress practical probl	ems and give a sour	nd scientific interpretation to the re	sults.
5. Use standard statistical software to develop models and analyze data that arise from different fields. Course Content: No. of Hours No. of Hours Unit No. Unit Contents No. of Hours Iter to the colspan="2">Iter to the colspan="2">No. of Hours Iter to the colspan="2">Iter to the colspan="2">No. of Hours Iter to the colspan="2">Iter to the colspan= 2 (to the colspan="2") Iter to the colspan= 2 (to the colspan="2") 1. The colspan="2">The colspan= 2 (to the colspan="2") Iter to the colspan="2">Iter to the colspan="2">Iter to the colspan="2">Iter to the colspan= 2 (to the colspan="2") Iter to the colspan="2">Iter to the colspan="2">Iter to the colspan= 2 (to the colspan="2") Iter to the colspan="2">Iter to the colspan="2">Iter to the colspan="2">Iter to the colspan= 2 (to the colspan= 2 (to the colspan="2") Iter	4. Ass	ess the model using	standard criterions	103 2	
fields. Course Content: Unit No. Unit Contents No. of Hours 1. Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. 15 2. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15	5. Use	standard statistical	software to develo	p models and analyze data that aris	e from different
Course Content:Unit No.Unit ContentsNo. of Hours1.Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.152.Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. 	field	ls.	1		
Course Content:Unit ContentsNo. of HoursUnit No.Unit ContentsNo. of HoursTheory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.15Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations.153.Fundamental concept of generalized linear model (GLM), exponential family15			20		
Unit No.Unit ContentsNo. of Hours1.Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.152.Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations.153.Fundamental concept of generalized linear model (GLM), exponential family15	Course Co	ntent:	19 21	US KA	
1.Theory of linear estimation, estimable function, multiple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.152.Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations.15	Unit No.		Unit	Contents	No. of Hours
 Incory of meal estimation, estimation, numple regression model, least squares estimator and its properties, variance and covariance of least squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family 		Theory of linear	estimation estimation	ble function multiple regression	model
1.Iteration spaceFor propertiesVariance and covariance of reast squares estimator, BLUE, estimation space, error space, Gauss-Markov theorem in linear estimation. Confidence interval estimation, prediction interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.152.Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations.153.Fundamental concept of generalized linear model (GLM), exponential family15		least squares esti	mator and its pror	erties variance and covariance of	of least
1. <td></td> <td>squares estimato</td> <td>r BLUE estimati</td> <td>on space error space Gauss-</td> <td>Markov</td>		squares estimato	r BLUE estimati	on space error space Gauss-	Markov
1.Incorement in micro costinuation: Commutee interval estimation, prediction15interval, distribution of quadratic forms for normal variables: related theorems (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots.15Dummy variables and their use in regression analysis. 		theorem in line	r estimation Cor	fidence interval estimation pre	diction
 (statements only), hypothesis testing for model for general linear hypothesis, testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family 15 	1.	interval distributi	on of quadratic for	ns for normal variables: related th	eorems 15
 testing of individual regression coefficients. Residual analysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family 15 		(statements only)	hypothesis testing	for model for general linear hypo	othesis
of residuals, residual plots. Interview regression coefficients: residual dualysis: different types of residuals, residual plots. Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. 15 forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 15 3. Fundamental concept of generalized linear model (GLM), exponential family 15		testing of individu	al regression coeff	icients Residual analysis differen	it types
Dummy variables and their use in regression analysis. Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 3. Fundamental concept of generalized linear model (GLM), exponential family		of residuals, resid	ual plots.		i i i j pes
 Multicollinearity: Consequences, detection and remedies, ridge regression. Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family 15 		Dummy variables	and their use in reg	ression analysis.	
 Variable Selection Procedures: R-square, adjusted R-square, Mallows' Cp, forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. Fundamental concept of generalized linear model (GLM), exponential family 15 		Multicollinearity:	Consequences. de	tection and remedies, ridge regr	ression.
forward, backward and stepwise selection methods, AIC, BIC. Variance stabilizing transformations. 3. Fundamental concept of generalized linear model (GLM), exponential family 15	2.	Variable Selectio	n Procedures: R-so	mare, adjusted R-square, Mallow	vs' Cp. 15
stabilizing transformations.153.Fundamental concept of generalized linear model (GLM), exponential family		forward. backwa	rd and stepwise s	election methods. AIC. BIC. V	ariance
3. Fundamental concept of generalized linear model (GLM), exponential family 15		stabilizing transfo	rmations.		
	3.	Fundamental con	cept of generalized	linear model (GLM), exponential	family 15

	of random variables. Link functions such as Logit, Probit, binomial, inverse					
	Gaussian, gamma. Nonlinear models, ML estimation in nonlinear models.					
	Large sample tests about parameters, goodness of fit, analysis of deviance.					
	Variable selection: AIC and BIC.					
	Logistic regression: logit, probit and cloglog model for dichotomous data with					
	single and multiple explanatory variables, ML estimation, large sample tests					
4.	about parameters. Hosmer-Lemeshow test, ROC curve.	15				
	Poisson regression: ML and Quasi-likelihood estimation of parameters, testing					
	significance of coefficients, goodness of fit test.					
Internal As	ssessment:					
Part A	Continuous Internal Assessment I					
	Continuous Internal Assessment II					
Part B	Assignments: Students should perform theoretical/experimental					
	assignments.					
Reference /	Text Books:					
1.	Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to					
	linear regression analysis. John Wiley & Sons.					
2.	Kutner, M. H., Nachtsheim, C. J., Neter, J., & Wasserman, W. (2004). Applied					
	linear regression models (Vol. 4, pp. 563-568), New York: McGraw-					
	Hill/Irwin.					
3.	Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic					
	regression (Vol. 398). John Wiley & Sons.					
4.	McCullagh, P., & Nelder, J. A. (2019). Generalized linear models. Routledge.					
	and the second s					
E-Resource	es:					
1.	https://nptel.ac.in/courses/111105042					

Course	e Name: Stoc	hastic Processes	Course	Code: STA 4	108
Teaching Sche	eme	Examination Scheme		Credit Allott	ed
Theory: 4 hours	s/ week	End Semester Examination	n: 60 Marks	Theory: 3	
		Internal Assessment: 20+2	20 Marks		
Practical: 2 hou	irs/ week	End Semester Examination	n: 100 Marks	Term Work: 1	
				Total: 4	
Course Pre-re	quisites: Stud	lent must have knowledge o	f		
1. Random v	ariables				
2. Conditiona	al probability				
3. Generating	g functions				
	•				
Course Object	ive:	de la		-f. C(1('1	Due
1. The main	objective of	the paper is to provide the	d their applications	of Stochastic I	Processes and to
		Hastic/Raildolli Flocesses al	id their applications.		
1 Differentia	te discrete ar	d continues random variabl	es and its distribution		
2 Recognize	various prob	ability models and their pro-	perties		
2. Keelinze 3. Understand	d concent of	compound mixture and trun	perfies.		
4 To simulat	te the realizat	ions of complex experiment			
5 Use variou	s distribution	s for variety of real life situ	ations	TEK	
<u>5.</u> 030 variou		s for variety of real file situ			
Course Conter	nt:	5	7		
Unit No.		Unit Cont	ents	Z	No. of Hours
Г	Definition of	stochastic process class	sification of stochas	tic processes	
a	ccording to	state space and time doma	in, finite dimensional	distributions.	
. E	Examples of	15			
1. E	Examples of	les of Markov chains, Formulation of Markov chain models, initial			
d	listribution, t	ransiti <mark>on probability ma</mark> trix	, Ch <mark>apman-Kolmo</mark> goi	ov equations,	
с	alculatio <mark>n o</mark> f	n-step transition probabilitie	es. Simulation of Marl	kov C <mark>ha</mark> in.	
0	Classification	of states, irreducible Marko	ov chain, period of the	state, random	
2 V	walk and Gambler's ruin problem, first entrance theorem, first passage time				15
2. d	listribution. I	oution. Long-Run proportions and limiting probabilities, relation with			15
n	nean recurren	ce time, stationary distribut	ion.	11	
C	Continuous ti	me Markov Chain: Poisso	n process and related	d inter-arrival	
3. t	ime distributi	15			
p	process, birth	and death process, problems, Renewal processes, Elementary			
r f	Colton Water	n Branching process. Cons	applications	ita muonontiaa	
	Janon- walso	hability of ultimate extinct	ion Distribution of n	ns properties,	
1	noments. Fio	on results. Simulation of	branching process	Martingales	15
stopping tim			ian motion process.	and its basic	15
properties.					
	- speries.				
Assessment:					
CIA	Continuous	Internal Assessment I			Written
	Continuous	Internal Assessment II			Written/Assign
					ment/
					Viva/Presentati

		on
ESE	End Semester Examination	Written
Reference/ T	ext Books:	
1.	Bhat B. R. (2000). Stochastic Models: Analysis and Applications. New Age	
	International.	
2.	Kulkarni, V. G. (2016). Modeling and analysis of stochastic systems.	
	Chapman and Hall/CRC.	
3.	Medhi J. (2009). Stochastic Process. New Age International Publications.	
4.	Cinlar E. (2013). Introduction to Stochastic Process. Courier Corporation.	
5.	Ross S. (1996): Stochastic Processes. Wiley.	
6.	Hoel, P. G., Port, S. C., & Stone, C. J. (1986). Introduction to stochastic	
	processes. Waveland Press.	
7.	Pinsky, M., & Karlin, S. (2010). An introduction to stochastic modeling.	
	Academic press.	

Course Name: Introduction to Python		Course	Code: STA 483
Teaching Scheme	Examination Scheme	(Credit Allotted
Theory: 2 hours/ week	End Semester Examination	on: 60 Marks	Theory: 2
	Internal Assessment: 20+	-20 Marks	
Practical: 2 hours/ week	Total: 100 Marks]	Practical: 1
		r	Total: 3
Course Pre-requisites:	Student must have knowled	dge of	
1. Basic mathematic	cal operations		
2. Vector and matri	x operations		
~ ~ ~ ~ ~ ~			
Course Objective:	RS	TYA	
1. This Python cou	irse is designed for stude	ents to learn to cod	e from scratch and become
comfortable with	programming in Python	. Students will learn	the syntax, principles, and
thought processe	s that programming entails		
Course Outcom out After	n constation of this course	atu dant will ahla ta	
Ludenstend the	er completion of this course	student will able to	
1. Understand the p	rogramming basics (operat	ions, control structure	es, data types, etc.)
2. Understand and t	begin to implement code	nto and stains arouins	lations
5. Understand pythe	to structures for storing do	to and string manipu	inations.
4. Create various uz	rogramming basics (operat	iane control structur	as data types ata)
5. Onderstand the p	rogramming basies (operat	ions, control structure	es, data types, etc.)
Course Content		k y	
Unit	m /	John S	
No. Unit Contents	- Sra	3 Ens	No. of Hours
1. Introduction to	Python, installation and w	orking with Python,	15
id, keywords, i	mport, module, help, varia	bles, operators, data	15
input/output, d	ata types, lists, dictionarie	es, data import and	
export, tuples	s, sets, operations ful	nctions, functional	E
programming.	string operations. Installation	ion of libraries.	15
2. Control structu	re: while, for loops. Brea	ik, 11-else, continue,	13
Programing: ob	toining arithmatic maan a	d variance of given	de
data identifica	tion of prime numbers	sorting the data in	Ca -
ascending order	etc Defining functions	sorting the data in	
3 Pandas: creatio	n of data frames create a	n empty data frame	15
create a data fi	ame from lists/ dict of no	larrays/list of dicts	15
row selection	addition and deletion	n merging/ioining	
concatenating	biects, summarizing data	table-wise function	
application. ro	ow or column wise fu	inction application.	
importing data	form csv to data fran	ne, percent change.	
covariance, cor	relation, data ranking	· · · · · · · · · · · · · · · · · · ·	
Assessment:			

CIA	Continuous Internal Assessment I	Written			
	Continuous Internal Assessment II	Written/Assignment/			
		Viva/Presentation			
ESE	End Semester Examination	Written			
Refere	nce/ Text Books:				
1. 1	McKinney, W. (2012). Python for data analysis: Data wrangling with				
]	Pandas, NumPy, and IPython. " O'Reilly Media, Inc.".				
2. 1	2. Beazley, D., & Jones, B. K. (2013). Python cookbook: Recipes for				
1	mastering Python 3. " O'Reilly Media, Inc.".				
E-Reso	purces:				
1. 1	1. https://www.tutorialspoint.com/python_pandas/python_pandas_tutorial.pdf				

प्राणम् अन्य विश्वविद्यालयं मान्स् 2009 विद्यालयं मान्स् विश्वविद्यालयं जनस्वनावद्यी तमस्य व

Course Nam	e : Data Mining	(Elective)	Course Nam	ne: STA 521		
Teaching Sc	heme	Examination Scheme		Credit Allotted		
Theory: 4 ho	urs/ week	End Semester Exa Internal Assessme	mination: 60 Marks nt: 20 + 20 Marks	Theory: 3	Theory: 3	
	Total: 100 Marks Total : 3					
Course Pre	-requisites: Stud	dent must have know	owledge of			
1. Norr	nal, Chi-square,	t, and F distribution	ons, t-test			
Learning Ou Upon success 1. Unde 2. Reco organ 3. Appl 4. Desig 5. Profi	 Learning Outcome: Upon successful completion of this course, the student will be able to: Understand approach of data mining. Recognize the competency in the use of data mining to the decision-support level of organizations. Apply different data mining techniques to address real life problems. Design and Implement data-mining solutions for different applications. 					
Course Cont	tent 🧹 < 🖊					
Unit No. U	nit Contents	5 3		No. of Hours	, ;	
1 D D In ite	1 Data Mining: Introduction, Techniques, Issues and challenges, applications, Data pre-processing, Knowledge representation Association Rule Mining: Introduction, Methods to discover association rules, Association rules with item constraints					
2 D	ecision Trees: I onstruction algor onstruction	ntroduction, Tree ithm, Pruning tecl	construction principle, D nniques, Integration of p	ecision tree oruning and 10		
3 C D te te th R C	luster analysis: Ir ensity, Character echniques, Hierarc echniques, Scalab leory, use of rough OC Curves: Intr urves, Area under	troduction, clusteri istics of clustering hical clustering, De le clustering algor n set theory for class oduction, ROC Sp ROC Curve, Avera	ng paradigms, Similarity a c algorithms, Center base nsity based clustering, Oth ithms, Cluster evaluation sification & feature selection bace, Curves, Efficient g uging ROC curves, Applica	and distance, d clustering er clustering , Rough set 12 on. eneration of tions		
 Advanced techniques: Web mining - Introduction, Web content mining, Web structure mining, Web usage mining; Text mining- Unstructured text, Episode rule discovery from text, Text clustering; Temporal data mining – Temporal association rules, Sequence mining, Episode discovery, time series analysis; Spatial data mining – Spatial mining tasks, Spatial clustering, Spatial trends. 						
Assessment:						
CIA	Continuous In	ternal Assessment 1	[Written		
	Continuous In	ternal Assessment		Written/Assignment/ Viva/Presentation		
ESE	End Semester	Examination		Written		

ELECTIVES offered in VIII-SEMESTER

References

- 1. Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
- 2. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.
- 3. Mastering Data Mining: M. Berry and G. Linoff, John Wiley & Sons., 2000

Course Name: National Development Statistics (Elective)			Course	e Code: STA 522		
Teaching S	Teaching Scheme Examination Scheme Credit Allotted		Credit Allotted			
Theory: 4 h	ours/ week	End Semester Examination: 60 Mark	ζ <u>s</u>	Theory: 3		
		Internal Assessment: 20 + 20 Marks				
		Total: 100 Marks		Total: 3		
Course Pr	re-requisites:	Student must have knowledge of				
1. No	rmal, Chi-squ	are, t, and F distributions, t-test				
Objective:	1	ERSITY				
development	objective is to	make individual understand the sign	inficance and rol	e of statistics in national		
Learning (Dutcome: 🧹	V CA	14			
Upon succe	essful completi	on of this course, the student will be al	ole to:			
1. Un	derstand the co	ncept of Economic development para	meters.			
2. Dif	ferentiate the p	popula <mark>tion growth of</mark> develop and deve	loping countries			
3. Ap	ply diffe <mark>re</mark> nt te	chniques of poverty measurement.	ENT /	3		
4. Kn	ow vari <mark>ou</mark> s ins	titutions responsible for the collection	of data i <mark>n India.</mark>	3		
5. Un	derstand variou	as i <mark>ssue</mark> s in the measurement of povert	y. 🦕			
Course Content						
Unit No.	Unit Content	s	6	No. of Hours		
1	1 Economic development: Growth in per capital income and distributive justice, Indices of development, Human Development index, quality of life. Estimation of national income-product approach, income approach and expenditure approach					
2	Population g	rowth in developing and developing and developing and developing the second second second second second second	ed countries,	Population 10		
3	Poverty meas combined mea	urement-different issues, measures of asures e.q. indices due to Kakwani, Se	of incidence and n etc.	intensity, 13		
4	 MOSPI- Statistical System of India: NSSO, CSO, NSSTA, NITL Ayoge, Different Institutions and committees are responsible for planning and 10 execution of National Building. 					
Assessmen	t:	-401001				
CIA		Continuous Internal Assessment I	Wı	itten		
		Continuous Internal Assessment II	Written/Assignment/			
			Viv	va/Presentation		
ESE		End Semester Examination	Wr	itten		
References	5	1	I			

- 1. Chatterjee, S.K.: Quality of life.
- 2. Chaubey, P. K.: Poverty Analysis, New Age International (P) Limited, Publishers. New Delhi.
- 3. Human Development Annual Report.
- 4. Sen, Amartya.: Poverty and Famines, Oxford University Press.
- 5. CSO. National Accounts Statistics- Sources and Health.
- 6. UNESCO: Principles of Vital Statistics Systems.

Course Name : Principles & Practice of Insurance (Elective) Course Code: STA 523			Course Code: STA 523		
Teachin	g Scheme	Examination Scheme	Credit Allotted		
Theory: 4 hours/ week End Semester Examination: 60 Marks Th		ks Theory: 3			
		Internal Assessment: 20 + 20 Marks	\$		
		Total: 100 Marks	Total: 3		
~					
Course	Pre-requisites: Stud	ent must have knowledge of			
1.					
Objectiv	20 •	- BOITH			
The mai	n objective is to introdu	ce the basics and concepts of insuran	ce.		
Learnin	g Outcome:	the dustes and concepts of mountain			
Upon su	ccessful completion of	this course, the student will be able to): C		
1.	Understand the present	status of insurance.			
2.	Classify in between life	and non-life insurance.	Z		
3.	Know different types of	investing and saving schemes in var	ious funds.		
4.	Linderstand the function	of regulatory bodies like IRDA	1 7 1		
S. Course	Content	Tor regulatory bodies like IKDA.	2 2		
Unit	Unit Contents	S	No. of Hours		
No.					
1	Origin, Development and Present Status of Insurance, Risk Management, List out the Benefit and Cost of Insurance, Fundamental Key Principles of Insurance, Types of Insurance Contracts, Classification of Insurance.				
2	 Classification of insurance in life and non-life insurance, micro insurance, social insurance and general insurance (motor, marine, fire, miscellaneous), 15 Types of insurance plans: whole life, term, endowment. 				
3	Types of investments and saving, Insurance, Shares, Bonds, Annuities, Mutual and Pension Fund.				
 Basics of Under-writing, Claims Management, Reinsurance, Legal and Regulatory Aspects of Insurance. Seminar/Assignments: Each student will have to prepare his/ her presentation/ making assignments based on any topic from Actuarial Science and presents 13 it. The topics will cover cases studies covering various aspects of the principles of insurance including IRDA regulations, publications, the 1938 Act 2006 and accounting standards. 					
Assessm	ient:				
CIA	Continuous Intern	al Assessment I	Written		
	Continuous Intern	al Assessment II	Written/Assignment/ Viva/Presentation		
ESE	End Semester Exa	mination	Written		
Referen	ces		·		
	1. Principles and Prac	tice if Life Insurance, ICAI, New De	lhi		
,	Black & Skipper: L	ife and Health Insurance, Pearson Ed	lucation		

3. Harrington, Scott E. & Gregory R. : Risk Management and Insurance: 2nd ed., Tata McGraw Hill Publicating Company Ltd. New Delhi

Course Na	ame : Survival	Analysis (Elective) Course Code: STA 524	
Teaching	Scheme	Examination Scheme Credit All	otted
Theory: 3	hours/ week	End Semester Examination: 60 Marks Theory: 3	
		Internal Assessment: 20 + 20 Marks	
		Total: 100 Marks Total: 3	
Course P	re-requisites:	Student must have knowledge of	
1.	•	NERSITY OF	
Objective	:		
The main	objective of the	his paper is to introduce different concepts and applications of	survival
Learning	Outcome:		
Upon succ	essful completio	on of this course, the student will be able to:	
1. Ui	nderstand the ne	eed of life time distributions and their properties.	
2. Id	entify th <mark>e</mark> different	ent type of censoring.	
3. Es	timate p <mark>a</mark> ramete	ers in presence of censoring.	
4. In	plement differ	rent parametric and nonparametric estimators for estimating	survival
fu	nction.		
5. Al	halyse the lifetin	me event data.	-
Unit No.	Unit Contonta		Noof
Unit No.	Unit Contents	2 3 3 ~~	Hours
	Survival Char	acteristics and Parametric Models: Survival function quantiles	
	hazard rate, c	cumulative hazard function, and mean residual life, Parametric	
	models for st	udy of event time data: Exponential, Weibull, extreme value,	,
1	gamma, Pareto	o, logistic, log-logistic, normal, log-normal and mixture models -	10
1	their survival c	characteristics.	10
	Parametric Info	erence: Longitudinal studies. Censoring mechanisms- type I, type	;
	II and left righ	it and interval censoring. Likelihood function under censoring and	L
	estimation. Te	ests based on LR, MLE.	<u> </u>
	Nonparametric	c Inference: Actuarial and Kaplan-Meier estimators. Treatment of	2
•	ties. Self-cons	sistency property and asymptotic properties of K–M estimator	10
2	(statement). Po	ount wise confidence interval for $S(t)$. Nelson-Aalen estimator of	10
	cumulative has	zard function and estimation of S(t) based on it. Iwo-sample	2
	Semi-neurous. Com	parison of survival functions. Log rank and Tarone-ware tests.	
	Semi-parametr	action of the partial likelihood and estimation of regression	
	coefficients a	azards model. The partial fixelihood and estimator of regression	
3	asymptotic pr	operties of the estimator Confidence interval for regression	15
5	coefficients W	Vald Rao and likelihood tests for B Accelerated life model Model	13
	selection criter	ria and comparison of nested models (-2logL AIC BIC) Using	, r
	information on	prognostic variables in a competing risks model.	

4	Concept of frailty. Shared frailty models. Identifiability of frailty models. Various frailty models. Gamma, positive stable, inverse Gaussian, power variance function, compound Poisson and compound negative binomial shared frailty models. Frailty regression models. Bivariate and correlated frailty models. Additive frailty models. Reversed hazard rates, Cox's proportional reversed hazards model.	10
ssessmer	nt:	

Assessing		
CIA	Continuous Internal Assessment I	Written
	Continuous Internal Assessment II	Written/Assignment/ Viva/Presentation
ESE	End Semester Examination	Written

References

.

Books Recommended

- 1. Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data, Chapman and Hall.
- 2. Deshpande, J.V. and Purohit S.G. (2005). Life Time Data: Statistical Models and Methods, Word Scientific.
- 3. Duchateau, L. and Johnson, P. (2008). The Frailty Model. Springer: New York.
- 4. Gross A.J. and Clark, V. A. (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences, John Wiley and Sons.
- 5. Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. CRC Press: New York.
- 6. Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer: New York.
- 7. Wienke, A. (2011). Frailty Models in Survival Analysis, CRC Press: New York.

PAPER NAME : Statistical Methods for Bio-Computing (Elective)		Course Code: Co STA 52	ourse Name: 25		
Teaching Sch	eme	Examination Sch	neme	Credit Allotted	
Theory: 4 hour	rs/ week	End Semester	Examination: 60	Theory: 3	
		Marks			
		Internal Assessme	ent: 20 + 20 Marks		
		Total: 100 Marks		Total: 3	
		<u> </u>			
Course Pre-	requisites	: Student must ha	ve knowledge of		
1. Proba	bility distr	ibutions, Statistic	al Inference, Bayesi	ian Inference	
Objectives					
Objective:	of statist	al matheda and	tools from onalised .	un habiliter ta addusas	
The use	or statisti	ical methods and	tools from applied	probability to address	problems in
computa Distance	tional		WILL 1		
Biology.					
Learning Out	come:	on of this course, th	he student will be able	a to:	
1 Under	stand the ne	eed of molecular an	id morphological data		
2. Identif	fy the align	ment of biological s	sequences.	· 7 2	
3. Estima	ate a good o	listance function.	Tan		
4. Apply	simulation	techniques for the	modelling of biologic	al sequence.	
5. Design	1 vari <mark>o</mark> us cl	ustering algorithms	s.	9	
Course Conte	nt 🔨 👘		n / Ma	5	-
Unit No.	Unit Con	itents	2 3 5	mas /	No. of Hours
	Type of	genetic data: - Mol	ecular and morpholo	gical data. Differences	
	and adva	ntages of molecul	ar data on, morphol	ogical data, Character	
	data and	distance data, thei	r relative merits and	demerits. Concept of	
1	entropy,	entropy as a meas	sure of uncertainty,	entropy of single and	11
l	combined	l sche <mark>me/s</mark> , Measur	e of information con	tent based on entropy.	
	Relative	entropy its similar	rity with likelihood	ratio. Applications of	

	these to biological sequences.	
2	(Alignment of biological sequences): Pairwise and local alignment of biological Sequences (DNA/protein sequences). How biological sequences are different from mathematical sequences? The scoring matrices for alignment algorithms PAM and BLOSUM matrices. Algorithm for global alignment (Needleman Wunch algorithm). Local alignment algorithms (Smith - Waterman) Gap Model, dynamic programming algorithms for alignment with gaps such as linear gap model, affine gap model. Introduction to heuristic alignment algorithms such as BLAST, FASTA	11
3	Molecular phylogeny Analysis: Tree of life, gene and species tree. Distance based methods for reconstruction of phylogenetic tree such as UPGMA, weighted UPGMA, transformed distance method, nearest neighbor joining method. Comparison of trees generated using different distance function Requisites of a good distance function. Character	11

based methods for molecular phylogeny, maximum likelihood method and maximum parsimony method. Assessing trees via bootstrap. Probabilistic approach to phylogeny. Probabilistic models of evolution, Felsenteins algorithm for likelihood computation. Juke Canter model and Kimura and other probabilistic models for evolution.						
 Applications of Markov and Hidden Markov models to biological sequence Analysis. Markov chain as a classifier, use of Markov chain Model for demarcation of a region in Biological sequence analysis. Application of these in genetic sequence analysis such as detection of CPG Island. Testing whether given stretch of sequence is coming from CPG Island (use of Markov model for discrimination) Markov model based classification clusterization, testing order of a Markov model, testing homogeneity of two Markov models, Use of these test to design clustering algorithm. Hidden Markov/chains. Difference between these and simple Markov chains. Analysis of Hidden Markov Models/chains. Verterb is algorithm, Forward and backward algorithm for hidden Markov model. Parameter estimation in hidden Markov model when the labeled of the parameter estimation in hidden Markov model when the labeled of the parameter estimation in hidden Markov model when the labeled of the parameter estimation in hidden Markov model when the parameter estimation in hidden the parameter estimation is hidden to parameter estimation in hidden the parameter estimation is hidden to parameter estimation in hidden to parameter estimation in hidden to parameter estimati						
	B					
Assessment:	E a line m A					
CIA	Continuous Internal Assessment I Written					
	Continuous Internal Assessment II Written/Assignment/ Viva/Presentation					
ESE	End Semester Examination Written					
References	References					
 Alexander Isaac: (2001). Introduction to Mathematical Methods Bioinformatics. Springer. Durbin R., Eddy S. Krogh A. Michelson G. (1998). Biological Sequence Analysis, Cambridge University Press. 						

3. 3. Robin S., Rudolph F, Schboth S. (2003) DNA Words and models Statistics of Exceptional Words, Cambridge University Press.

PAPER NAME : Computer Intensive Statistical Methods (Elective) Course Code					
Teaching	Scheme	Examination Scheme	Credit Allotted		
Theory: 4	hours/ week	End Semester Examination: 60 Marks	Theory: 3		
-		Internal Assessment: 20 + 20 Marks			
		Total: 100 Marks	Total: 3		
Course Pr	e-requisites:	Student must have knowledge of			
1. Sta	atistical inferen	nce			
2. No	onparametric in	Iference			
3. Re	gression analy	sis			
0		RSITY			
Course O	bjective:		al annumentation al internaire		
methods f	for doing stati	this paper is to make students understar	d computational intensive		
Learning	Outcome	stical interence.			
Upon suce	cessful comp	etion of this course, the student will be abl	e to:		
1.	Understand t	he necessity of resampling methods.	· · · · · · · · · · · · · · · · · · ·		
2.	Recall missir	g data imputation techniques to impute mi	ssing values.		
3.	Develop prog	graming codes for computationally intensiv	e methods.		
4.	Evaluate diff	erent statistical algorithms using cross valid	dation.		
5.	Apply variou	s B <mark>ayesian techniques</mark> to analyze real life p	problems. 🔁 🔀		
Course C	ontent :	C PRIP /			
Unit No.	Unit C <mark>o</mark> nter	its	No. of Hours		
	Resampling	Techniques: Re sampling paradigms,	bias-variance		
	trade-off. B	potstrap methods, estimation of sampling	distribution,		
1	confidence	nterval, variance stabilizing transformation	on. Jackknife 11		
	and cross-v	alidation. Jackknife in sample surveys.	Jackknife in		
	regression u	nder heteroscedasticity. Permutation tests.			
	Missing Va	ues and Imputations Techniques: Missin	g values and		
	types of mis	singness, imputations methods for missing	values, single		
2	and multiple	imputations. EM Algorithm	3 11		
_	and Applications: EM algorithm for incomplete data, EM algorithm				
	for mixture i	nodels, EM algorithm for missing values, s	stochastic EM		
	algorithm.	- dolladie			
	Smoothing	techniques: Kernel estimators, near	est neighbor		
3	estimators,	orthogonal and local polynomial estima	tors, wavelet 11		
	estimators. Splines. Choice of bandwidth and other smoothing				
parameters.					
4 Bayesian computing, Markov Chain Monte Carlo. Simulation using					
	MCMC, Par	ticle filtering, MUMU methods for missing	values.		
Assessme	ent:				
CIA		Continuous Internal Assessment I Write	ten		
		Continuous Internal Assessment II Write	ten/Assignment/		

		Viva/Presentation		
ESE	End Semester Examination	Written		
Reference/Text Book	s:			
1. Buuren, Stef va	an (2012). Flexible Imputation of Mis	ssing Data. Chapman and Hall.		
2. Chihara, L. ar	nd Hesterberg, T. (2011) Mathema	tical Statistics with Resampling		
andR. Wiley.				
3. Davison, A.C.	and Hinkley, D.V. (1997) Bootstrap	methods and their Applications.		
Chapman and I	Hall.			
4. Efron, B. and T	Fibshirani. R.J. (1994); An Introduction	on to the Bootstrap. Chapman		
5. and Hall.				
6. Christensen R	, Johnson, W., Branscum A. and	Fishman, G.S. (1996) Monte		
Carlo:Concepts	s, Algorithms, and Applications. Spri	nger.		
7. Gilks, W. R.,	Richardson, S., and Spiegelhalter,	D. (eds.) (1995) Markov Chain		
MonteCarlo in	Practice. Chapman and Hall.	P		
8. Good, P. I. (2	2005) Resampling Methods: A Pra	actical Guide to Data Analysis.		
BirkhauserBos	el.			
9. Hanson T. <mark>E</mark> .	(2011). Bayesian Ideas and Data	Analysis: An Introduction for		
Scientistsa <mark>nd</mark> S	tatisti <mark>cians, Chapm</mark> an Hall.	tan in		
10. Jim, A. (2 <mark>0</mark> 09).	. Bayesian Computation with R, 2nd	Edn, Springer.		
11. Kennedy W. J.	Gentle J. E. (1980) Statistical compu	ting. Marcel Dekker.		
12. McLachlan, G	J. and Krishnan, T. (2008) The H	EM Algorithms and Extensions.		
Wiley.				
13. Rubinstei <mark>n,</mark> R.Y	Y. (1981); Simulation and the Monte	Carlo Method. Wiley.		
14. Shao J. an <mark>d</mark> Tu	14. Shao J. an <mark>d</mark> Tu, D. (1995); The Jackknife and the Bootstrap. Springer Verlag.			
15. 14. Tanner, M.	A. (1996); Tools for Statistical Infere	ence, Third edition. Springer.		
	2 3 3			

PAPE	PER NAME :Reliability Analysis Course Code: STA 546			°A 546	
Teaching S	Teaching SchemeExamination SchemeCl			Credit Allotted	
Theory: 4 hours/ week		End Semester Examination: 60 Marks		Theory: 3	
		Internal Assessment: 20 +	- 20 Marks		-
		Total: 100 Marks		7	Total: 3
Course Pre-	requisites: S	tudent must have knowledge	of		
1. Prob	ability distrib	outions			
	2				
Course Obj	jective :				
To impart t	he concept	of reliability and how sta	atistical an	d probabilistic theo	ries are applied to
model and e	xplain life o	of a mechanical component	along with	n prediction of the sa	me.
Course Out	tcomes:			A A	
1. Mod	el and expla	ain the operation time of a	mechanical	component.	
2. Top	redict the re	eliability of a component, s	ystem and	of a finished product	•
Expl	ain the natu	ire of the lifetime of an iten	n as well.		
Course Cor	tont			M H	
Unit_1	Item.	nit Contents		TI	No. of Hours
Omt-1	Doliobility	acheents and massures a	omponente	& systems: cohoror	10.0110015
	systems r	eliability of the coherent sy	vetems Cu	ts and naths module	
1	decompos	ition bounds on system rel	iability. cu	uctural and reliabilit	u V
	importanc	e of components	iaointy, su		y
	Reliability	v estimation based on failu	re time in	various censored lif	e 15
	tests. Stres	ss-strength reliability and i	ts estimatio	on IFR IFRA NBI	
2	DMRL an	d NBUE and their duals.	e		
	exponentia	al distribution. Closures of	of		
	Coherent s	systems. 20			
	Univariate	shock models and life d	istribution	arising out of then	n. 10
2	Bivariate	shock models, common b	n		
5	and their	their properties. Maintenance and replacement policies;			s;
	availabilit	y of repairable systems.			
	Students y	will be required to do pr	acticals, b	ased on topics liste	d 10
	below, usi	ng R software:	1919		
		1. Components and System Reliability			
4		2. Reliability of the coher	rent system	l	
		3. Reliability estimation based on failure time			
4. Maintenance and replacement policies					
5. Modeling of a repairable system					
Aggoggmant	•				
Assessment	• 	Т, 1А.	т	XX 7 •	
CIA	CIA Continuous Internal Assessment I Written				
Continuous Internal Assessment II Written/Assignment/				/	

Г

			Viva/Presentation		
ESE		End Semester Examination	Written		
Refe	rence/Text F	Books:			
1.	Sinha, S. K.	and Kale, B. K. (1983): Life Testing and H	Reliability Estimation,	7.	
	Wiley Easte	rn Limited.			
2.	Barlow R.E	and Proschan F. (1985): Statistical Theorem	ory of Reliability and		
Life testing: Holt,					
3.	Rinehart and	d Winston.			
4.	4. Lawless J.F. (1982): Statistical model and Methods of Life time data, John				
	Willey.				
5.	5. Bain L.J. and Engelhardt (1991): Statistical Analysis of Reliability and Life				
	testing Mod	els, Marcel <mark>Dekk</mark> er. CRSTY			
6.	Nelson, W.	(1982): Applied Life Data Analysis, John V	Villey.		

Course Name: Time Series Analysis &		Course Code	STA 501	
Forecasting				
Teaching So	cheme	Examination Scheme	Credit Al	lotted
Theory: 4 ho	ours/ week	End Semester Examination	n: 60 Marks Theory: 3	
		Internal Assessment: 20 +	20 Marks	
Practical: 2 h	nours/ week	Total: 100 Marks	Practical:	1
			Total: 4	
Course Pre-	requisites: St	udent must have knowledge	of	
1. Line	ar model	-000	<u>A</u> <u>A</u> <u>A</u> <u>A</u>	
2. Line	ar Algebra			
3. Basi	c of stochastic	process	ITY	
			FA	
Course Obj	ective:			
1. The	main purpose	is to teach the time series	modeling and the concept of	f forecasting and future
plan	ning.	X A	7	
			U V	
Course Out	comes: After of	completion of this course stu	ident will able to	
1. Und	erstand the co	nce <mark>pts of</mark> stationarity of a tin	ne series and solve related pro	plems.
2. Test	the stationarit	y of a time series		
3. Und	erstand the the	cory related to linear and no.	nlinear time series models and	fit an appropriate linear
4 Und	series model	or the data.	time series model $VAP(1)$	and analyza data using
4. Und VAF	R(1) models	eory related to multivariate	e unie series model VAR(1)	and analyze data using
5. Use	information cr	iteria for the selection of mo	odels and forecast the value.	
			1 Sms	
Course Con	tent:	4		0
Unit No.	Unit Conten	its		No. of Hours
	Basics of T	ime series: A model build	ing strategy. Time series an	d
	Stochastic	process. Portmanteau t	ests for noise sequence	
	transformation to obtain Gaussian series stationarity Auto correlation			
1	meaning and definition-causes of auto correlation-consequence of			f 15
1.	autocorrelation test for auto-correlation. Study of Time Series model			
	and their pro-	on test for auto correlogram	ACE and PACE Yule walk	r
	equations	perties using correlogram,	Ter and Ther. Full walk	4
	Time Series	Models: White noise Prov	pess Random walk Unit ro	st
	hypothesis	Co integration Dicky Fulle	r test unit root test sugmente	d
	Dickey Fi	uller test MA AP APM	A and ARIMA models Boy	u
2.	Dickey – 14	thedelegy for fitting of AD	(1) $AP(2) MA(1) MA(2)$ or	15
	$\Delta DIM A (1, 1)$	nroaces Model diagnosis	(1), $AR(2)$, $MA(1)$, $MA(2)$ at	u a
	AKINA(1,1)	(process. wroter tragnosis)	of fitted model and forecastin	g
	(by using sol	iwalt).		
	Non-linear t	ime series models, ARCH	and GARCH Process, orde	r - 17
3.	identification	n, estimation and diagnostic	tests and forecasting. Study (I 15
	ARCH (1) pr	roperties. GARCH process f	or modeling volatility.	

Department of Statistics

4.	Multivariate Time series: Introduction, Cross covariance, and correlation matrices, testing of zero cross correlation and model representation. Basic idea of Stationary vector autoregressive, Time Series with orders one, Model Structure, Granger Causality, stationarity condition, Estimation, Model checking.	15
Assessment		
CIA	Continuous Internal Assessment I	Written
	Continuous Internal Assessment II	Written/Assignment/ Viva/Presentation
ESE	End Semester Examination	Written
	PSITY	
Reference/	Text Books:	
1.	Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.	
2.	Chatfield, C. (2003). The analysis of time series: an introduction. Chapman and hall/CRC.	
3.	Tsay, R. S. (2005). Analysis of financial time series. John wiley & sons.	2
4.	Tsay, R. S. (2013). Multivariate time series analysis: with R and financial applications. John Wiley & Sons.	
5.	Montgomery, D. C., Johnson, L. A., & Gardiner, J. S. (1990). Forecasting and time series analysis. McGraw-Hill Companies.	В
6.	Chatfield, C. (2000). Time-series forecasting. Chapman and Hall/CRC.	
7.	Brockwell, P. J., & Davis, R. A. (Eds.). (2002). Introduction to time series and forecasting. New York, NY: Springer New York.	
8.	Chatfield, C. (2013). The analysis of time series: theory and practice. Springer.	
9.	Hamilton, J. D. (2020). Time series analysis. Princeton university press.	
10.	Cryer, J. D., & Chan, K. S. (2008). Time series analysis: with applications in R (Vol. 2). New York: Springer.	
<u> </u>	ाजस्विनावधीतमस्टे	

Course N	e Code: STA 502			
Teaching So	cheme	Examination Scheme	Credit Allo	tted
Theory: 4 ho	ours/ week	End Semester Examination: 20 + 20	Theory: 3	
		Marks		
		Internal Assessment: 20 + 20 Marks		
Practical: 2 h	nours/ week	Total: 100 Marks	Practical: 1	
			Total: 4	
Course Pre-	requisites: St	udent must have knowledge of		
1. Desc	criptive Statist	ics		
2. Prob	ability and pr	obability distributions		
3. Stati	stical Inference	d lineer model		
4. Line	wledge of R	d Inteat model		
Course Obi	ective: After	successfully completing this course, students s	should ordina	arily expect to be able
to:			Ce l	
1. Und	erstand the ma	ain features of multivariate data.	10	
2. Und	erstand the ch	aracteristics of multivariate quantitative resear	ch	
3. Und	erstand the p	rinciples and characteristics of multivariate s	tatistical tec	hniques and methods
effic	iently and eff	ecti <mark>vel</mark> y.		
			7 2	
Course Out	comes: After	completion of this course student will able to	2	
1. Desc	cribe basics of	multivariate data and understand properties of	<mark>f multiv</mark> ariat	e normal distribution
2. Dese stati	cribe Wishart stic.	distribution, applications of Hotelling's T	² statistics	and Mahalanobis D^2
3. Impl	lement discrip	ninant analysis, classification problems, pri	ncipal comp	ponents analysis, and
4. Dem	ionstrate know	vledge and understanding of the basic idea l	behind facto	r analysis and cluster
anal	ysis effectivel	y. 2000	KG1/2	2
5. Perf	orm classifica	tion of multivariate data.	0/0	4
		17 00- 17 139al		
Course Con	tent:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	/
Unit No.	Unit Conter	its	A 11	No. of Hours
	Concept of r	nultivariate data and analysis, random vector a	ind random	
	matrix. Mul	tivariate distribution function, marginal and	conditional	
	distribution,	sample mean vector, sample dispersion	on matrix,	
1	correlation n	hatrix, covariance matrix, exercises.		20
1.	Multivariate	normal distribution and its properties, random	n sampling	
	from multi	variate normal distribution, maximum	likelihood	
	estimators of	of parameters, distribution of sample me	an vector,	
	exercises.			
	Wishart dis	tribution and its properties. Hotelling's T	Γ^2 and its	
2.	applications.	Hotelling's T ² statistic as a generalization of	t square of	15
	student's sta	its relation with Hotelling's T ² statistic Dist	ainobis D2 ribution of	
	statistic allu	its relation with motening 5 1 statistic, Dist		

Department of Statistics

	multiple correlation coefficients, their maximum likelihood estimators (MLE), exercises,				
3.	Discriminant analysis, classification problem, Cluster Analysis, exercises.	15			
4.	Principle component analysis, Factor Analysis, Canonical correlation, Exercises.	10			
Assessment					
CIA	Continuous Internal Assessment I	Written			
	Continuous Internal Assessment II	Written/Assignment/			
		Viva/Presentation			
ESE	End Semester Examination	Written			
	ERSITY				
Reference/	Text Books:				
1.	Anderson, T. W. (1984): Introduction to Multivariate Analysis, John W	Viley			
2.	Fang, K., Kotz, S., Ng K. W. (1990): Symmetric Multivariate and	Related Distributions,			
	Chapman and Hall				
3.	Härdle, W. K. and Simar, L. (2012): Applied Multivariate Statistical Analysis Springer				
	New York				
4.	Johnson, R.A. and Wichern, D.W. (2007): Applied Multivariate Statistical Analysis, 6th Ed.,				
	Pearson Education				
5.	Kotz, S., Balakrishnan N. and Johnson N. L. (2000): Continuous Multivariate Distributions,				
	Volume 1, Models and Applications, John Wiley & Sons,				
б.	Kshirsagar, A. M. (1983): Multivariate Analysis, Marcel Dekker				
7.	Manly, B. F. J., (2004): Multivariate Statistical Methods - A primer, Chapman and Hall / CRC Florida				
8.	Morrison, D.F. (1990): Multivariate Statistical Methods, McGraw Hill Co.				
9.	Timm, N. H. (2002): Applied Multivariate Analysis, Springer, New York				
	2009				
E-Resource	s: A Pada	-			
1.	https://onlinecourses.swayam2.ac.in/cec20_ma17/preview				
	ने जारिवनावधीतमर ^{्फ}				

Course Na	ame: Plannir	g and Analysis of Industrial Experiment	ts Course Code: STA 502	
Teaching	Scheme	Examination Scheme	Credit Allotted	
Theory: 3	hours/ week	End Semester Examination: 60 Marks	Theory: 3	
		Internal Assessment: 20+20 Marks		
Practical: 2	hours/ week	Total: 100 Marks	Practical: 1	
			Total: 4	
Course Pr	e-requisites:	Student must have knowledge of		
1. Lir	near algebra			
2. Bas	sic design of e	experiments		
Course O	bjective:	BSITY		
1. Ena	able to plan,	design and conduct experiments efficientl	y and effectively, and analyze	
the	resulting data	to obtain objective conclusions.		
Course O	utcomes: Aft	er completion of this course student will ab	le to	
1. Un	derstand the	potential practical problems and application	ns of design of experiments in	
var	ious fields.			
2. Bu	ild a deeper u	nderstanding, and tools for analysis of expe	eriments.	
3. De	scribe how th	e analysis of the data from the experiment s	should be carried out.	
4. Us	e a statistical	computing package to analyze real-life data		
5. Ap	preciate the a	dvantages and disadvantages of a design to	r a particular experiment.	
0			•	
Unit No.	Unit Conte	its the second	No. of Hours	
	Basic princi	ple of experimental design, overview of RI	BD, CRD	
	and LSD. P	rpose of analysis of covariance. Practical	situations	
	where analy	sis of covariance is applicable. Model for	r analysis	
1.	of covarian	ce in CRD and RBD. Estimation of particular	arameters 15	
	(derivations	are not expected). Preparation of an	alysis of	
	covariance	ANOCOVA) table, test for $\beta = 0$, test for	r equality	
	of treatment	effects (computational technique only).	512 /	
	Contrasts,	orthogonal contrasts, Scheffe's met	hod for	
	comparing	contrasts; Comparing pairs of treatmen	t means:	
2	Tukey's te	st, Fisher least significant difference	method,	
Ζ.	intro block	realment means with a control. General	theory of 15	
	halancing b	lock design incomplete block design in	tra block	
	analysis of I	SIBD and its properties	III OIOCK	
	Concepts of	f factorial designs main effects and it	ateraction	
	effects The	two-factor factorial design and its analy	vsis using	
3	fixed effect	model The general factorial design Ar	alvsis of 15	
5.	replicated a	nd unreplicated 2 ^k full factorial designs	Blocking	
	and confour	nd in construct 2 run factorial design Construction 2^{k} factorial design Construction	ction and	
3.	Concepts o effects, The fixed effect replicated a	f factorial designs, main effects, and in two-factor factorial design and its analy model, The general factorial design, Ar nd unreplicated 2 ^k full factorial designs.	nteraction rsis using nalysis of 15 Blocking	
	and confou	nding in a 2 ^κ factorial design. Construc	ction and	

	analysis of 2^{k-p} fractional factorial designs and their alias structures.	
4.	The 3 ^k full factorial design and its analysis using fixed effect model. Response surface methodology: the method of steepest ascent, analysis of the response surface using first and second order models, characterizing the response surface, ridge systems, multiple responses, designs for fitting response surfaces: simplex design, central composite design (CCD), The concepts of nested and split-plot designs.	15
Assessmer		XX7 · · ·
CIA	Continuous Internal Assessment I	Written / A gaigenment/
	Continuous Internal Assessment II	Written/Assignment/ Viva/Presentation
FSF	End Semester Examination	Written
LOL		Witten
Reference	/ Text Books:	
1.	Montgomery, D. C. (2017). Design and analysis of experiments.	
	John Wiley & sons.	
2.	Hinkelmann, K., & Kempthorne, O. (2007). Design and analysis	
	of experiments, volume 1: Introduction to experimental	
	desig <mark>n</mark> (Vol. 1). John Wiley & Sons.	
3.	Wu, C. J., & Hamada, M. S. (2011). Experiments: planning,	
	analysis, and optimization. John Wiley & Sons.	
4.	Dean, A., & Voss, D. (Eds.). (1999). Design and analysis of	
-	experiments. New York, NY: Springer New York.	
	A	
E-Resourc	ces:	
1.	http://www.ru.ac.bd/stat/wp-	
	content/uploads/sites/25/2019/03/502_06_Montgomery-Design-	
	and-analysis-of-experiments-2012.pdf	1
	नेजारेवनावधीतमर्टे	1

Course Name : Econometrics Course Code: STA 541				
Teaching	Examination Scheme	heme Credit Allotted		
Scheme				
Theory: 4	End Semester Examination: 60 Marks		Theory: 4	
hours/	Internal Assessment: 20 + 20 Marks		•	
week				
	Total: 100 Marks		Total: 4	
Course Pre	-requisites: Student must have knowledge of			
4. Cor	relation regression	Yor		
5. Mu	ltivariate data analysis	FA		
Course Ol	institute (14		
The main	objective:	n integration of math	amatice statistics	
and econor	nics used to deal with econometric models		iematics, statistics,	
Course Or	Itcomes:	100		
Upon succe	essful completion of this course, the student	will be able to:	Í	
1. Unde	erstand the properties and problems of econo	ometric models.		
2. Reca	Ill various estimation and testing of hypothe	sis procedures in ecor	nometric models.	
3. Unde	erstand the conc <mark>ept of panel data m</mark> odels.			
4. Ident	tify th <mark>e f</mark> ixed and random effect models.			
5. Appl	ly Simultaneous Equation Models to analyse	the economic data.	•	
		End .		
Course Co	ontent :			
Unit No.	Unit Contents		No. of Hours	
	Introduction of Econometrics, Multiple L	inear Regression M	odel, 15	
1	Model with non-spherical disturbances,	lest of Auto-correla	ation,	
1	restricted regression estimator, Errors in Var	lables, Dummy varia	ables,	
2	Seemingly unrelated regression equation	(CLIDE) model an	d ita 15	
<i>∠</i>	Estimation Simultaneous equations model	(SURE) IIIOUEI all	l and	
1	reduced forms problem of identification ra	nk and order condition	on of	
	dentifiability.	ink and order condition		
3	Methods of estimation of simultaneous equ	ation model: indirect	least 10	
2	squares, two stage least squares and limit	ed information maxim	mum	
]	likelihood estimation, idea of three stag	e least squares and	full	
i	nformation maximum likelihood estimation	, and prediction		
4	Panel data models: Estimation in fixed ar	d random effect mo	odels, 05	
	Panel data unit root test			
Assessmen	nt:			
CIA	Continuous Internal Assessment I	W	Vritten	

ELECTIVES for IX-SEMESTER

	Continuous Internal Assessment II	Written/Assignment/			
		Viva/Presentation			
ESE	End Semester Examination	Written			
Reference/Text Books:					
1. Apte	e, P.G.: Text books of Econometrics, Tata McGraw Hill.				
2. Gujarathi, D.: Basic Econometrics; McGraw Hill.					
3. Johnston, J.: Econometrics Methods. Third edition, McGraw Hill.					
4. Srivastava, V.K. and Giles D. A. E.: Seemingly unrelated regression equations models,					

Marcel Dekker.5. Ullah, A. and Vinod, H.D.: Recent advances in Regression Methods, Marcel Dekker.

Course Name: Life & Health Insurance (Elective) Course Code: STA 5			STA 542		
Teaching Sch	SchemeExamination SchemeCredit Allotted			Allotted	
Theory: 4 h	nours/	rs/ End Semester Examination: 60 Marks		Theory	3
week		Internal Assessment: 20 + 20 Marks			
		Total: 100 Marks		Total: 3	
Course Pre-re	equisite	s: Student must have knowledge of			
1. Ba	sic mat	hematics			
Course Obje	ctive:				
The main obj	ective	of this paper is to make individuals av	vare about the	mechan	isms of life and
Course Oute	omos:				
Upon success	ful cor	upletion of this course, the student will h	e able to:		
1 Unc	lerstan	d the different type of insurance	be able to.		
2. Rec	all the	concept of conventional non-participati	ng life insuranc	e	
3. Cla	ssify th	e insurance plans under different insura	nce schemes	5.	
4. Rec	collect	the concepts from actuarial science.	M	4	
5. Uno	lerstan	d the actuarial aspects of insurance plan	s.	IN	
	21		5	P	
Course Cont	ent <mark>:</mark>			Z	
Unit No.	Un <mark>it</mark> (Conten <mark>ts</mark>	6		No. of Hours
1	Intr <mark>od</mark> ı	action to life and health insurance, var	ious types of li	ife and	
healt		insurance plans, available insurance	policies in the	Indian	07
	market		m		
	Conve	ntional non-participating life insurance,	Linked accum	ulating	
	non-participating contracts , Non-linked Accumulating No participating Contracts Participating Life Insurance, Differen				
2					15
	Distrib	oution Methods, Profit Distribution S	strategies, With	1-profit	
	polices	s, Dividends and Bonus Method	~	1	
	Health	insurance data, pricing & reserving, C	Classification of	f group	
3	and in	dividual insurance plan under life and he	ealth insurance,	Social	08
	securit	y schemes, Method of valuation, Analys	sis of surplus		
	The ac	ctuarial role in life office management:	Introduction, p	product	
	pricing	g, analysis of surplus, monitoring	and uploadir	ng the	
	assum	ptions in the control cycle. Further	uses of mod	lels in	
	Actuar	ial management.			
	Studen	its are also expected to complete three as	ssignments:		
4	1.	Each student is expected to write	a brief report	on an	15
		appropriate/ relevant real life prot	plem related	to life	
		insurance/health insurance/ genera	al insurance	using	
	_	statistical tools and techniques.	· • • • •	, ı	
	2.	Review one insurance existing policy	in Indian mark	ket and	
		advise change with comparative analys	51S.		

	3. Review some case study reported to different companies administrative or legal authoritie University.	insurance es of the	
Assessment:			
CIA	Continuous Internal Assessment I Written		
	Continuous Internal Assessment II	Written/Assignment/	
		Viva/Presentation	
ESE	End Semester Examination	Written	
Reference/Text Books:			
1. Black & Skipper: Life and health insurance, Pearson Education			
2. Philip Booth et al.: Modern actuarial theory and practice, Second edition, Chapman and			

PAPER NAME: Statistical Quality Management Course Code: STA 543			
Teaching	Examination Scheme	Credit Allotted	
Scheme			
Theory: 4	End Semester Examination: 60 Marks	Theory: 3	
hours/ week	Internal Assessment: 20 + 20 Marks		
	Total: 100 Marks	Total: 3	
Course Pre-re	quisites: Student must have knowledge of		
6. Standa	rd probability distributions		
7. Sampli	ing methods		
8. Testing	g of hypothesis		
~	ERSITY		
Course Obje	ctive :		
The main obj	ective of this course is to understand the procedure which see	eks to improve the	
quality of the	output of a particular industrial process.		
	omes:	t statistical quality	
1. Leannin manage	g to identify and remove the cause of defects through different	i statistical quality	
2 Learnin	g to minimize the variability in manufacturing and business pr	ocess	
2. Leanni	g to minimize the variability in manufacturing and business pro	50033.	
Course	Content:		
Unit No.	Unit Contents	No. of Hours	
1 Ci	umulative Sum Control Charts for Monitoring Process Mean	10	
Pr	ocess Variability. Tabular and V-Mask Methods. Movin		
av	verage and Exponentially Weighted Moving Average Contr	ol	
Cl	harts, Acceptance Control Charts, Economic design of X-cha	rt,	
Μ	ultivariate control charts.		
2 A	cceptance sampling plans for inspection by variables for tw	<u>70</u> 10	
sie	ded specifications. Continuous Sampling plans. Bayesia	an	
sa	mpling plans, Multiple sampling plans, Sequential sampling	ng	
pl	an, Designing a variables sampling plan with a specified O	C	
cu	rve, Other variables sampling procedures.	1	
3 Sr	pecifications and Process Capability, Capability Ratio, Proce	ss 10	
Ca	apability Indices: Cp, Cpk, Cpm, Cpmk estimation, confidence	ce	
in	tervals and test of hypotheses for normally distribute	ed	
ch	aracteristics, Process Capability Analysis for non-norm	al	
		1 17	
4 St	udents will be required to do practicals based on topics list	ed 15	
De	210W, USING K SOITWARE:		
	2 Moving average control chart		
	2. Woving average control chart 3. Exponentially weighted moving average control chart	+	
	4. Sampling plans for variables		
	5. Process capability analysis procedure		
Assessment:	······································	1	

CIA	Continuous Internal Assessment I	Written	
	Continuous Internal Assessment II	Written/Assignment/	
		Viva/Presentation	
ESE	End Semester Examination	Written	
Reference/Text Books:			
	1. D.C. Montgomery. (2009): Introduction to Statistical Quali	ity Control. Wiley.	
	2. Wetherill, G.B. Brown, D.W. (1991): Statistical Process Control Theory and		
	Practice, Chapman & amp; Hall.	-	
	3. Wetherill, G.B. (1977): Sampling Inspection and Quality control, Halsteed Press.		
	4. Duncan A.J. (1974): Quality Control and Industrial	Statistics, IV Edision,	
	Taraporewala and Sons.		
	5 Ott F R (1977): Process Quality Control (McGraw Hill)		

Course Name : Machine Learning (Elective)Course Code: STA 544					
Teaching Sche	eme	Examination Scheme		Credit Allotted	
Theory: 4 hours/ End Semester Examination: 60 Marks			Theory: 3		
week		Internal Assessment: 20 + 20 Ma	rks	-	
		Total: 100 Marks		Total: 3	
Course Pre-req	uisites: S	tudent must have knowledge of			
9. Linear a	lgebra	6			
Multiva	riate stat	tistics			
Regress	ion				
Course Object	ive:				
1. The obj	jective is	to familiarize the audience with	some basic learn	ing algorithms and	
techniq	ues and t	their applications, as well as gener	al questions relat	ed to analyzing and	
handlin	g large d	ata sets.			
2. Several	libraries	and data sets are publicly availab	ole, that will be u	sed to illustrate the	
applicat	tion of <mark>m</mark>	achine learning algorithms.	10		
3. The em	phas <mark>is</mark> v	vill be on machine learning algo	<mark>rithms and</mark> appli	cations, with some	
broad e	xplanatio	on of the underlying principles.			
4. To deve	elo <mark>p</mark> the l	pasic skills necessary to pursue res	earch in machine	learning.	
5. To deve	elop the	design and programming skills th	at will help you	to build intelligent,	
adaptive	e artifact	S.	5	P	
Course Outcon	m <mark>es: 🤇</mark>		- /	Z	
Upon successfu	ıl <mark>co</mark> mple	etio <mark>n of this</mark> course, the student wil	ll be able to:		
1. Understa	nd diffei	ent types of learning methods.	5		
2. Recogniz	ze differe	ent prediction models.	25	•	
3. Apply di	ffer <mark>ent</mark> c	lustering algorithms to real life dat	a	• / •	
4. Compare	differen	t machine learning algorithms.			
5. Perform	classifi <mark>c</mark> a	ation of m <mark>assive data using approp</mark>	riate machine lea	rning algorithms.	
	2009				
Course Content:					
Unit No. Uni	t Conter	nts जन्द्राज ति	241	No .of Hours	
1 Bas	ics: Intro	oduction to Machine Learning -	Different Forms	of	
Lea	rning Cl	assification: Classification tree, SV	VM, Instance Bas	sed 15	
Clas	ssificatio	n, LDA, Multiclass Classification.	all the		
2 Clus	stering:	Partitional Clustering - K-M	leans, K-Medoi	ds,	
Hier	rarchical	Clustering-Agglomerative, L	Divisive, Distar	nce 15	
Mea	asures,	Density Based Clustering -	DBscan, Spect	ral	
Clus	stering				
3 Ens	emble N	Aethods: Boosting - Adaboost,	Gradient Boosti	ng, 10	
Bag	ging - Si	mple Methods, Random Forest		10	
4 Dim	nensional	lity Reduction: Multidimension	nal Scaling, a	ind	
Mar	nifold	Learning Reinforcement Learn	ning: Q-Learni	ng, 5	
Tem	nporal Di	ifference Learning			
•					
Assessment:					

CIA	Continuous Internal	Written
	Assessment I	
	Continuous Internal	Written/Assignment/
	Assessment II	Viva/Presentation
ESE	End Semester Examination	Written
Defener es/Tert Deelra		

Reference/Text Books:

- 1. Pattern Recognition and Machine Learning. Christopher Bishop.
- 2. Machine Learning. Tom Mitchell.
- 3. Pattern Classification. R.O. Duda, P.E. Hart and D.G. Stork.
- 4. Data Mining: Tools and Techniques. Jiawei Han and Michelline Kamber.
- 5. Elements of Statistical Learning. Hastie, Tibshirani and Friedman. Springer.

PAPER NAME: Bayesian Inference (Elective) Course Code: STA 545				ode: STA 545
Teaching Scheme		Examination Scheme		Credit Allotted
Theory: 4 hours/ w	eek	End Semester Examination: 60 Marks		Theory: 3
		Internal Assessment: 20 + 2	20 Marks	
		Total: 100 Marks		Total: 3
Course Pre-requisit	tes: Stud	lent must have knowledge of		I
10. Probability c	listributi	ons		
11. Statistical in	ference			
Course Objective	:			
To know Bayesia	n appr	oach to solve statistical de	ecision problems	and use Bayesian
techniques for com	putation	n. DelTy		
Course Outcomes	:	NEROIT		
Upon successful co	ompletio	on of this course, the student	will be able to:	
1. Distinguish l	between	frequentist and Bayesian ap	proach.	
2. Employ prio	r inforn	nation for analyse of real life	data.	
3. Choose appr	opriate	prior distributions.		
4. Compute Ba	yes esti	mates for the population para	ameters.	
5. Apply Bayes	an theo	ory in testing of hypothesis p	roblems.	
a a i i	S		1	
Course Content:			7	
Unit Unit Conte	ents			No. of Hours
1 Regio alor	onte o	f Statistical Decision Prob	lom Exported	
decision r	iles (n	n-randomized and random	vized) Overview	uss,
Classical	and B	aversian Estimation Adv	intege of Baye	sian
inference	Prior	distribution Posterior dist	tribution Subject	tive
probability	probability and its uses for determination of prior distribution 15			
Importance	Importance of non-informative priors improper priors invariant			riant
priors. Cor	priors Conjugate priors construction of conjugate families using			
sufficient s	statistics	, hierarchical priors. Adm	issible and mini	max
rules and B	ayes rul	les.	47/	1
2 Point estim	ation. C	Concept of Loss functions, Ba	aves estimation u	nder
symmetric	loss fur	ctions, Bayes credible interv	vals, highest poste	erior
density inte	ervals, t	testing of hypotheses. Comp	parison with class	sical 15
procedures.	procedures. Predictive inference. One- and two-sample predictive			
problems.			1 1	
3 & 4 Bayesian a	pproxir	nation techniques: Normal	approximation,	T-K
approximat	approximation, Monte-Carlo Integration, Accept-Reject Method, 15			
Idea of Markov chain Monte Carlo technique.				
		*		I
Assessment:				
CIA Con	ntinuou	s Internal Assessment I		Written
Con	ntinuou	s Internal Assessment II		Written/Assignment/

			Viva/Presentation
ESE		End Semester Examination	Written
Refe	rence/Tex	t Books:	
1.	Berger, J.	O.: Statistical Decision Theory and Bayesian Analysis,	Springer Verlag.
2.	Robert, C	P. and Casella, G. : Monte Carlo Statistical Methods, Sp.	ringer Verlag.
3.	3. Leonard, T. and Hsu, J.S.J. : Bayesian Methods, Cambridge University Press.		
4.	4. Bernando, J.M. and Smith, A.F.M. : Bayesian Theory, John Wiley and Sons.		
5.	Robert, C	P.: The Bayesian Choice: A Decision Theoretic Motivat	tion, Springer.
6.	Gemerma	n, D. : Markov Chain Monte Carlo: Stochastic Simu	lation for Bayesian
	Inference	, Chapman Hall.	

7. Box, G.P. and Tiao, G. C.: Bayesian Inference in Statistical Analysis, Addison-Wesley.

Course Code	-
Course Name	Self-Learning
Credits	02

Guidelines

- Statistics is application base subject, and all the theory and concepts must me learnt by the students. All the theory papers are being taught by respective course instructor and do the practical as per contents. Here, we need to teach the concept with all the assumptions and theoretical applications. So, we introduce a self-learning course which will be completed in following manners.
- Every instructor needs to give minimum one simulated data sets from each chapter/concept/theory with the key point to be carried out during the solution and prerequisite.
- Evaluation will be regular basis. Student will do the solution immediately after learning the respective chapter/concept/theory and then get evaluated by the respective course instructor. Instructor will also monitor the regularity of the students with the learning of the concept. For this instructor will take the viva and give the marks immediately. The total scaled marks with equal weight of each problem will be final marks for the overall all assessments. It is noted that there will be no internal and end semester assessment of this course.

