List of Additional Elective courses for M.TechProgramme

CSE654 Machine Learning CSE655 System Design CSE657 Computer Vision and Pattern Recognition CSE659 Natural Language Processing CSE660 Blockchain Technology CSE661 Game Theory CSE663 Deep Learning CSE664 Cyber Security: Attacks and Defences

CSE661 GAME THEORY

Course Outline: This course provides an introduction to Game Theory. Game Theory is a mathematical framework that studies strategic interactions amongst self-interested decision makers. It has applications in a wide variety of areas, including statistical decision theory, artificial intelligence (online learning, multi-agent systems), economics and business (auctions, pricing, bargaining), political science (stability of government, military strategy), philosophy (ethics, morality and social norms) and biology (evolution, signalingbehavior, fighting behavior).

Course Overview: The novel concepts of game theory and how to find different equilibrium solutions to different types of games will be extensively covered in this course. These will be explained and elucidated with relevant examples. This course provides a rigorous treatment of solution concepts for games with perfect and imperfect information including rationalxizability, Nash and subgame perfect Nash equilibria.

UNIT 1- Games with Perfect Information-Strategic Games; Nash Equilibrium and Existence Properties; Some Games in Normal Form, Nash Equilibria in Zero-Sum Games, Bräss' Paradox, and more on Mixed Strategies, Games in Extensive Form, Market Equilibrium and Pricing.

UNIT 2- Electoral Competition: Median Voter Theorem; Auctions: Definitions and The role of Knowledge; Decision Making and Utility Theory; Mixed Strategy Equilibrium.

UNIT 3-The Paretian System Equilibrium, and Walrasian General Equilibrium Theory, Von Neumann and Morgenstern Utility Function, Theory of Risk Aversion, Equilibrium Theory.

UNIT 4- Sealed Bid Auctions, VCG Procedures, Generalized Vickrey Auctions, VCG Procedures, Cournot Competition and Stackelberg Equilibrium; Arrow's Impossibility Theorem, Gibbard-Satterthwaite Theorem, Bargaining Game with Alternating Offers; Bargaining Game with Alternating Offers (General Utilities); Nash Bargaining Solution.

TEXT/REFERENCE BOOKS:

1) "Fun and Games: A Text on Game Theory", KenBinmore, A.I.T.B.S Publishers.

2) "A Course in Game Theory", Martin J. Osborne and Ariel Rubinstein, MIT Press.

3) PrajitDutta, Strategies and Games, MIT Press

Learning Outcomes: On successful completion of this course, students will be able to model competitive real world phenomena using concepts from game theory and identify optimal strategy and equilibrium solution for such models. They will be ready to explain the potential or proven relevance of game theory and its impact in various fields of human interaction which involve conflict of interest between two or more participants.

CSE654Machine Learning									
Teaching	Examination Scheme	Credits							
Scheme 2	Field of connector Examination (0 months	allocated							
h/week+	+ End of semester Examination-oo marks								
Practical		Thetheur T							
2h/week									
Course Objective:									
1. To unders	stand concepts of Machine learning.								
2. To learna	nd develop models for real world applications.								
Course Outcomes	: On completion this course, students will be able to								
1. Student w	ill be able to Understand ML Fundamentals								
2. Learn to a	apply Data Preprocessing Techniques								
3. Develop N	ML Applications for real world problems.								
Level	Masters								
Course Content:									
Unit I	Introduction to Machina Lagraning Lagraning Problems	11 bro							
Unit –I	Types of Machine Learning Linear algebra Linear Models	11 111 5							
	for Pagrassion & Classification Linear regression Logistic								
	Regression Bias-Variance: Training/Testing Evaluation:								
	Cross-Validation								
Unit-II	K nearest neighbour algorithm Introduction to Decision	11 Hrs							
Olint II	Trees – Basic concepts advantages and real-world	11 1115							
	applications Tree Splitting Criteria - (ID3 C45								
	CART) Ensemble Methods: Bagging & Boosting, Random								
Forest, Gradient Boosting Machines and XGBoost.									
Unit-III	Introduction to Probability, Naïve Bayes, Maximum	16 hrs							
	Likelihood Estimation (MLE), Maximum APosteriori								
(MAP) Neural Networks, Multilayer Perceptron,									
Backpropagation. Activation Functions (ReLU, Sigmoid,									
Tanh, Softmax). Stochastic Gradient Descent, Introduction									
	to SVM.								
	Evaluation Metrics like - accuracy, TPR, FPR, FRR, FPR,								
	Sensitivity, Specificity, ROC / DET curve, Precision-Recall,								
	F1-Score								
Unit-IV	Unsupervised Learning: Clustering, k-means Clustering.	8 hrs							
	Density-Based Clustering, DB-Scan.								
Internal assessment									
Part A	CIA-I: Unit I, and II	20 Marks							
	CIA-II: Unit III, and IV	20 Marks							
Part B	60 Marks								
Text/Reference Books:									
1. Machine Learning, Tom M. Mitchell, McGraw Hill, 1997.									
2. Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2006									
Reference Books.									
1. Pattern Classification. Duda, Hart and Stork. 2nd ed., Wiley, 2006									
2. Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz									

- and Shai Ben-David, Cambridge University Press, 2014.3. A First Course in Machine Learning, Simon Rodgers and Mark Girolami, Second Edition CRC Press
- 4. Learning From Data, Yaser Abu-Mostafa, AML BooksML, PR, Data Mining
- 5. Machine Learning An algorithmic Perspective, Second Edition, Stephen Marsland, CRC Press
- 6. Fundamentals of Machine Learning, John D. Kelleher, The MIT Press

An Introduction to Machine Learning, Second ed, Miroslav Kubat, Springer An Introduction to Statistical Learning, Gareth James, Robert Tribshirani, Springer

CSE659 Natural Language Processing								
Teaching	Examination Scheme	Credits						
Scheme		allocated						
Theory 3	End of semester Examination-60 marks	Theory-3,						
h/week+		Practical-1						
Practical								
Zh/Week	2h/week							
Course Conte	master s							
		10 1						
Unit –I	Introduction to NLP: Introduction natural language processing,	10 nrs						
	stop word removal, stemming, lemmatization. Language Modeling:							
	N-grams, chain rule, Markovassumption, Evaluating Language							
	Models, Smoothing: Laplace Smoothing, Add-ksmoothing,							
	interpolation, backoff methods.							
Unit-II	Classification, Learning representation: Text classification, Naïve	10 Hrs						
	bayes, EvaluationPrecision, Recall, F-measure. Vector space							
	model, Term weighting schemes, TermFrequency, Term							
	Frequency-Inverse Document Frequency, Binary.Vector							
	Semantics: Embeddings, Cosine for measuring similarity, Point							
	wise MutualInformation (PMI).							
Unit-III	Dimensionality reduction for NLP: Latent semantics, Singular	10 hrs						
	value decomposition, Principal Component Analysis.							
	Distributional semantics, Word Embeddings, Word2Vec,							
	skipgram, continuous bag of words (CBOW), Embeddings using							
	SVD.							
Unit-IV	Neural Networks and Neural Language Models: Gradient descent,	10 hrs						
	convolution, Convolutional neural network for NLP applications.							
	Recurrent neural network, Long short term memory,							
	GRU.Unsupervised Approaches, Latent semantic analysis. NLP							
	Applications – Sentiment Analysis, Spam Detection,							
	Abusivelanguage detection, Fake news detection etc.							
	Internal assessment							
Part A	CIA-I: Unit I, and II	20 Marks						
	CIA-II: Unit III, and IV	20 Marks						
Part B	ESE: Term Exam	60 Marks						
Text/Referen	ce Books:							
1. Dan J	urafsky and James Martin. Speech and Language Processing: An Int	roduction to						
Natural LanguageProcessing, Computational Linguistics and Speech Recognition.								
Prentice Hall, Second Edition, 2009.								
2. Chris Manning and HinrichSchütze. Foundations of Statistical Natural Language								
Processing. MIT Press, Cambridge, MA: May 1999.								
Reference Books:								
1.	Allen, James, Natural Language Understanding, Second	d Edition,						
Benja	Benjamin/Cumming, 1995.							
2. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.								

CSE663 Deep Learning									
Teaching	Examination Scheme	Credits							
Scheme		allocated							
Theory 3	End of semester Examination-60 marks	Theory-3,							
h/week+		Practical-1							
Practical									
2h/week									
Level	Level Masters								
Course Conter	Course Content:								
Unit –I	Introduction to Machine Learning, Neural Networks Overview	11 hrs							
	and its Representation, Neuron Model and Network Architecture,								
	Transfer Function, Single laver and Multiple								
	layers of Neurons. Role of Hidden layers, Computing a Neural								
	Network's Output. Activation Functions. Derivative of Activation								
	Function, Need of Non-linear Activation, Deep Neural Networks,								
	Challenges and issues with deep networks								
	Perceptron Gradient Descent and its role in Neural Networks								
	Stochastic gradient descent and contemporary variants								
	Feedforward and Backpropagation Percentron Learning Rules								
Unit II	Autoencodere, Verietional Autoencodere, Deen Boltzmann	11 Uro							
Unit-II	Autoencoders, variational Autoencoders, Deep Bolizinanii								
	Machines. Introduction to deep learning models. Convolutional								
	Neural Network, Differentarchitectures, convolution / pooling								
Unit-III	Sequential learning, Recurrent Neural Network and Long term	11 hrs							
	short memory (LSTM), GRU, Encoder Decoder Architectures								
Unit-IV	Evaluation metrics. Deep learning application in Computer	11 hrs							
	Vision and NLP: Image segmentation, object detection,								
	Introduction to NLP and Vector Space Model.								
	Word Vector representations: Continuous Skip-Gram Model.								
	Continuous Bag-ofWords model (CBOW). Text classification.								
	Object detection.								
	Internal assessment	20.15.1							
Part A	CIA-I: Unit I, and II	20 Marks							
	CIA-II: Unit III, and IV	20 Marks							
Part B	Part BESE: Term Exam								
Text/Reference	e Books:								
1. Martin T. Hagan, et al. "Neural Network Design", Latest Edition									
2. Charu C. Aggarwal, "Neural Networks and Deep Learning: A Textbook", Springer									
3. Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press									
book									
Reference Books.									
I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.									
2 K P Murnhy Machine Learning A Prohabilistic Perspective MIT Press 2012									

K. P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

CSE670 Blockchain Technology										
Teaching Schem			ne	Examination Scheme C				Cı	redits	
(77)	0 1	/ 1	D 1						located	
Theory 2h/wor	y 3 I ok	n/week+	Practical End of semester Examination-60 marks						heory-3,	
Course Prerequisite: Students should have knowledge of Computer Networks and N										d Network
Programming										
Cours	e Obje	ctive:								
1.	Tou	nderstand	concepts	of Block	chain and	applicati	ons			
2. To understand the implementations of Peer-peer networking applications										
Cours	e Outc	omes: On	completio	n this cour	rse, studen	ts will be a	able to			
1.	Diffe	rentiate t	he differe	ent types	of block	chain app	olication bas	sed o	n und	erlying P2P
	syste	ms		• 1			-			• •
2.	Desig	gn a P2P	system for	r a given	applicatio	on.				
3.	Desig	gn a Publ	ish-subscı	ibe syste	m					
4.	Anal	yze the is	sues in an	y blockel	hain appli	cation				
Level			Masters							
Cours	e Cont	ent:								
Unit –	Ι	Introduc	ction to bl	ockchain	technolog	gy, Chara	cteristics of			10 hrs
		blockch	ain, Basic	s of Netv	vorking, T	CCP/IP me	odel, IPv4 A	ddre	SS	
		scheme,	, Socket P	rogramm	ing, TCP	client and	l Server, UD	P cli	ent	
		and Ser	ver. Clien	t/Server I	Networki	ng archite	cture, P2P n	etwo	rking	
		architec	ture.							
Unit-I	Ι	Interpla	netary Fil	e System	, P2P Swa	arm, publi	ish-subscrib	e syst	tem,	10 hrs
		SHA25	6, RSA pi	iblic and	private ke	ey cryptog	graphy, digit	al		
		signatur	e.							
Unit-I	Unit-III Blocks, blockchain architecture, byzantine fault tolerance							10 hrs		
		consens	us mechanism, Contest driven decentralisation, types of							
		blockch	ain netwo	orks, CAP	theorem	and smar	rt contracts.	•		
Unit-I	V	Case stu	idies on b	lockchair	n applicat	ion such a	s Bitcoin, fi	lecoi	n etc.	10 hrs
										1
			T	Int	ernal asse	ssment				
P	art A		CIA-I: Unit I, and II 20						Marks	
			CIA-II: Unit III, and IV 20						Marks	
	Part	<u> </u>		Ŀ	ESE: Term	Exam			60	Marks
Text/F	Referen	ce Books:	1. 1 т	17	11 D	р				
1. Computer Networking by J. Kurose and k. Ross, Pearson Education										
2. P2P Networking and Applications by John Buford, Heather Yu, Eng Keong Lua, Morgan										
3 ID	nann PFS htt	ne·//doce	info tech/							
4 Bitcoin: A neer-neer Electronic cash system by Satoshi Nakamoto										
CO/P	0 map	oing		usii cusii	System 0	, Satobili	- (4114111010)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	3				2	2
CO2	2	3	3	2	3				2	2
CO3	2	3	3	2	3				2	2
CO4	2	3	3	2	3				2	2

CSEXXX- Cyber Security: Attacks and Defences											
Teaching Scheme				Examir	nation Scl	heme	Cre	dits			
Theory 3 hrs/week			End of	semester		4 (T	heory-3 and				
Practical 2 hrs/week				Examir	nation: 60) marks					
Internal assessment: 40 marks											
Total-	3										
Cours	e Prei	requisite:	course o	n prograi	nming an	d informatio	on securi	ity.			
Cours	æ Obj	ective: Th	nis course	e has a fo	cus on ena	abling the st	udents t	o understan	d various a	attacks,	attack
models, launching methods, defence mechanisms, evaluation metrics and attack case studies.											
Course Outcomes: On completion this course, students will be able to											
CO1:		Understan	nd cyber	security j	orinciples	and unders	tand the	cyber-attacl	k space.		
CO2:		Students	should be	e able to	understand	d the attack	termino	logy, attack	taxonomi	es, attac	ck
		models an	nd related	d risks.							
CO3:		Students	should b	e able to	understa	nd various	defense	mechanisms	s of differ	ent atta	cks, their
		implemer	ntations,	overhead	s and relat	ted circumv	ention is	ssues.			
CO4:		Student s	hould als	o be able	to learn r	nethods to e	evaluate	different de	fence mec	hanism	s.
Cours	e Con	tent:								Total Hrs	
Unit -	[Introduct	ion to see	curity prin	nciples, D	igital threat	landsca	pe,		10 hrs	1
		incident s	statistics,	economi	cs of secu	rity threats,	threat a	ctors,			
		target are	as.								
Unit-I	Ι	Attack taxonomies, attack scale, attack methods, attack and 10hrs									
		threat mo	dels, Dis	cussion c	of attacks	such as MI	TM, Side	e-			
		Channel,	DDoS, in	njection,	software-	vulnerabilit	y-driven	,			
		phishing,	malware	e-driven, a	and passw	ord attacks	etc.				
Unit-I	II	Defense	mechanis	sms of v	arious att	acks, evalu	ation me	ethods, sopl	nistication	10hrs	
		attacks, E	Evaluation	n of defer	nse metho	ds.					
Unit-I	V	Case stud	lies of we	ell-knowr	attack an	nd defense r	nechanis	sms.		10hrs	
			•		Intern	al assessm	ent				
P	Part A			CL	A-I: Unit	I, and II			20 M	arks	
				CIA	II: Unit I	II, and IV			20 M	arks	
	Part	B		E	SE: Term	Exam			60 M	arks	
Text I	Books:										
1.	Vers	atile cybe	rsecurity	, Conti,	Mauro, G	aurav Soma	ni, and I	RadhaPoove	endran, eds	s Vol.	72.
	Spri	nger, 2018	8.								
2. Pfleeger, C.P., 2009. Security in computing. Pearson Education India.											
Reference Books:											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									PO10		
CO1	2	3	3	2	3)	100	2		2
	2	2	2	2	2		-				2
CO2	2	3	5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2	
CO3	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2		
004	2	3 3 2 3 2 2 2									2