Syllabus for B.Voc in ROBOTICS AND AUTOMATION

Academic Year 2024-2025

Department of Vocational Studies and Skill Development

School of Engineering and Technology

Central University of Rajasthan

NH-8 Jaipur- Ajmer Highway, Bandarsindri Kishangarh -305817 District-Ajmer, Rajasthan Website: <u>www.curaj.ac.in</u>

1. List of programs to be offered by the department (Officially correct nomenclature to be followed)

- B.Voc in Robotics and Automation
- B.Voc in Interior Design

2. For B.Voc in Robotics and Automation:

Program Outcomes:

Vocational studies prepare the students for specific trades, crafts and careers at various levels and scopes. Scope of modern fabric of vocational education builds Human resource from a trade/ craftsmanship, technician or professional position in R & D organizations.

The Program Outcomes are the skills and knowledge which the students have at each exit level/ at the time of graduation. These Outcomes are generic and are common to all exit levels mentioned in the programme structure. Graduates of the B.Voc program are expected to -

- **PO1.** Ability to apply fundamental knowledge of the specific skill-based trade for the solution of target skill sector.
- **PO2.** Ability to identify industry related problems at varied complexity and analyze the same to formulate/ develop substantiated conclusion using first principles of domain sectors and technical literature.
- **PO3.** Ability to design/ develop solutions for broad based problems in the target skill-based trade to address changing challenges put forward by market demand/ stakeholder.
- **PO4.** Ability to design and conduct technology enabled experiments, analyze the resulting data and interpret the same to provide valid conclusions.
- **PO5.** Ability to use the techniques, skills and modern tools that are necessary for skill-based trade to practice with clear understanding of limitations.
- **PO6.** Ability to apply broad understanding of ethical and professional skill-based trade practice in the context of global, economic, environmental and societal realities while encompassing relevant contemporary issues.
- **PO7.** Ability to apply broad understanding of impact of skill-based trade in a global, economic, environmental and societal context.
- **PO8.** Ability to develop practical solutions for skill trade problems within positive professional and ethical boundaries.
- **PO9.** Function effectively as a leader and as well as team member in diverse/multidisciplinary environments.

- **PO10.** Ability to communicate effectively in oral and written format addressing specific professional/social demands.
- **PO11.** Ability to demonstrate knowledge and understanding of the first principles of skill trade and apply these to one's own work as a member and leader in a team, to complete project in any environment.
- **PO12.** Ability to recognize the need for and have the ability to acquire advance knowledge for addressing the changing technological demands of the target skill trade.

Program Specific Outcomes (PSO):

Graduates of the B.Voc (Industrial Automation) program are expected to -

- ✓ Apply basic and fundamental knowledge of electronics, electrical, mechatronics fundamentals and Industrial automation specialization for the solution of automated manufacturing and process related problems.
- ✓ Identify complex industrial automation related problems at varied complexity and analyze the same to formulate/ develop substantiated conclusion using first principles of electronics, electrical and mechatronics and technical literature.
- ✓ Design and conduct technology enabled experiments, analyze the resulting data and interpret the same to provide valid conclusions.
- Use the techniques, skills and modern tools necessary for industrial automation practice clear understanding of limitations.

b. Approved Intake (30)

Admission through CUET and CURAJ norms: 30 (Seats)

c. Minimum Eligibility for entry

Candidate must have passed 10+2 Science (PCM) with at least 50% Marks for UR and 45% for reserved category.

d. Course Structure of the programe

- Skill Development Components 60-70% Weight age
- General Education Component 30-40% Weight age

The B.Voc Programme should comprise 60-70% Skill Development Components (60-70% of total Credit) and 40% General Education Component (30-40% total Credit) as per guidelines of UGC and NSQL.

As an illustration, awards shall be given at each stage as per Table 1 below for cumulative credits awarded to the learners in skill based vocational courses.

Exit Option

The programme allows exit of a student in an intermediate stage, on successful employment. Scopes will be there for further continuation of study. The otherwise exit options will be as follows-

Exit point	Duration	Diploma/Degree to be offered
First exit	After 6 month Certificate in V	Vocation
Second exit	After 1 yr	Diploma in Vocation (D.Voc.)
Third Exit	After 2yr	Advanced Diploma in Vocation (Adv. D.
		Voc.
Fourth exit	After 3 yr	Bachelor in Vocation (B.Voc.)

3Year B.Voc in Robotics and Automation

Detailed Scheme

<u>First Year</u>

	NSQF Le	vel 5 SEMESTER I					
Sr.N	Course	Course Name	Course	L	Т	Р	Credits
0	Code		type				
			(GC/SC)				
				Hou	ırs/we	ek	
1	VSSD101	Basics of Electronics and Electrical Systems	SC	3	0	2	4
2	VSSD102	Fundamentals of Industrial Automation	SC	3	0	2	4
3	VSSD103	Basics of Mechanical Systems	GC	3	0	0	3
4	VSSD104	Introduction to Robotics	SC	3	0	2	4
5	VSSD105	Applied mathematics-I	GC	3	0	0	3
6	VSSD106	Introduction to Computer Programming	SC	2	0	2	3
7	VSSD107	English (Language and Communication Writing Skills)	GC	3	0	0	3
8	VSSD108	Laboratory Project-I	SC	0	0	6	6
		SC-Skill Component, GC-General Component					
	Total Cree	lit					30

	NSQF Le	vel 5 SEMESTER II					
Sr.	Course	Course Name	Course	L	Т	Р	Credits
No	Code		type (GC/SC)				
				Hou	rs/wee	ek	
1	VSSD109	Sensor and Transducer	SC	3	0	2	4
2	VSSD110	Fundamentals of Artificial Intelligence	SC	2	0	2	3
3	VSSD111	Kinematics and Dynamics of Robotics	SC	3	0	2	4
4	VSSD112	Professional Ethics in Engineering	GC	3	0	0	3
5	VSSD113	Basics of Welding Technology	GC	3	0	0	3

6	VSSD114	Introduction to Computer Aided Design	SC	0	0	4	2
7	VSSD115	Applied mathematics-II	GC	3	0	0	3
8	VSSD116	Laboratory Project II	SC	0	2	6	8
		SC-Skill Component, GC-General					
		Component					
	Total Cree	lit					30

<u>2nd Year</u>

	NSQF Le	vel 6 SEMESTER III					
Sr. No	Course Code	Course Name	Course type (GC/SC)	L	Т	Р	Credits
				Hou	rs/we	ek	
1	VSSD201	Energy and Environment	GC	3	0	0	3
2	VSSD202	Electrical machine for Automation	SC	3	0	2	4
3	VSSD203	Manufacturing Technology	GC	3	0	0	3
4	VSSD204	IOT & Embedded Systems	SC	3	0	2	4
5	VSSD205	Industrial safety Practices	GC	3	0	0	3
6	VSSD206	Electrical Drives and Control for Automation	SC	2	0	2	3
7	VSSD207	Laboratory Project-III	SC	0	2	8	10
		SC-Skill Component, GC-General					
		Component					
	Total Cree	dit					30

	NSQF Level 6 SEMESTER IV						
Sr.	Course	Course Name	Course type	L	Т	Р	Credits
No	Code		(GC/SC)				
1	VSSD208	Industrial on Job Training-I	SC				30
	Total Credit						
	SC-Skill Component, GC-General Component						

<u>3rd Year</u>

	NSQF Le	evel 7 SEMESTER V					
Sr.	Course	Course Name	Course type	L	Т	Р	Credits
No	Code		(GC/SC)				
				Hou	rs/we	ek	
1	VSSD301	Entrepreneurship Development	GC	3	0	0	3
2	VSSD302	Robotics for Industrial Automation	SC	3	0	2	4
3	VSSD303	IoT in Industrial Automation	SC	3	0	2	4
4	VSSD304	Introduction to Control System	GC	3	0	0	3
5	VSSD305	Fundamental of Mechatronics	GC	3	0	0	3
6	VSSD306	Open Elective-I	SC	2	0	2	3
7	VSSD307	Laboratory Project-IV	SC	0	2	8	10
		SC-Skill Component, GC-General					
		Component					

I OTAL Credit			Credit	Total
---------------	--	--	--------	-------

	NSQF Level 7 SEMESTER VI						
Sr.	Course	Course Name	Course type	L	Т	Р	Credits
No	Code		(GC/SC)				
1	VSSD308	Industrial on Job Training-II	SC				30
	Total Credit						30
	SC-Skill Component, GC-General Component						

Job role

Matrix based frame work under NSQF

Level	Process required	Professional knowledge	Professional skill	Core skill	Responsibility
Level 5	Basic understanding of Electrical &Electronics systems, basics of Mechanicals and ROBOTICS	Acquire knowledge on working of Robotics with automation	Enhancement of skills to perform some projects related to Robotics and automation	Desired applied mathematical skill, understanding of sufficient Robotics skill for enhancement of employability	After completion of first year, students can work as Technician or operator in the field of Electronic, Robotics and Automation industry.
Level 6	Demands of wide range of technical skill, clarity of knowledge and practice in Robotics & Automation	Factual and theoretical knowledge in broad contexts in the field of Robotics	A range of cognitive and practical skills required to generate solutions to specific problems in Robotics study	Reasonably good in mathematical calculation, understanding of social, reasonably good in data collecting organizing information, and logical communication	After completion of second year, students can work as Technician or Supervisor in the field of Electronic, Embedded, Robotics and Automation industry.

30

	Requires a	Wide ranging,	Wide range of	Good logical and	After
	command of wide	factual and	cognitive and	mathematical	completion of
	ranging	theoretical	practical	skill;	Third year,
	theoretical and	knowledge in	skills required to	understanding of	students can
	practical skill,	broad contexts in	generate solutions	Social, political	work as
	involving variable	Robotics and	to	and	Technician,
Le	routine and non-	Automation	specific problems	natural	Supervisor,
ve]	routine context in		in a field of	environment;	Engineer or
7	the field of		Robotics	ability in	Manager
	Robotics			collecting and	in the field of
				organizing	Electronic,
				information,	Embedded,
				communication	Robotics and
				and	Automation
				presentation skill	industry.

Total Credit is: 30+30+30+30+30+30=180

List of electives/open electives

- 1. VSSD215: Microprocessor and Microcontroller
- 2. VSSD216: Electrical Drives
- 3. VSSD217: Tool and Die Making
- 4. VSSD218: CNC Technology
- 5. VSSD219: Modern Automated and Intelligent Vehicles
- 6. VSSD220: Robotics and Artificial Intelligence
- 7. VSSD221: Computer Vison in Robotics

Ba	sic Electronics and Electrical Systems (VSS	D 101)				
Teaching Scheme	Examination Scheme	Credits allocated				
Theory 3 h/week+	+ End of semester Examination-60 marks Theory + Practical					
Practical 2 h/week						
Course Prerequisite: Knowledge of 10+2 Physics.						
Course Objective: The main objective of this course is to understand the basics knowledges						
on electrical and electronics systems and their operation of the several electrical or						
electronics devices. Also, to emphasis on important electrical installation used in domestics						
or household purposes.						
Course Outcomes: On completion this course, students will be able to						
CO1: To understand	CO1: To understand and analyze basic electrical and electronics circuits					
CO2: To study the v	vorking principles of electrical machines and en	nergy converters.				
CO3: To introduce t	he components of low voltage electrical install	ations.				
CO4: Understand a	pout digital electronics. They will get insights c	on digital logics theorems				
and basic combinati	onal logic devices.					
Level	Bachelor					
Course Content:						
Unit -I	Electrical circuit elements (R, L and C), voltage	ge and current 10 hrs				
	sources, Kirchoff current and voltage laws, S	uperposition,				

	Thevenin and Norton Theorems. Representation of sinusoidal waveforms, peak and rms values, phasor	
	power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonances, Concept of Transformer.	
Unit-II	 Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries, power factor improvement and battery backup. 	10 hrs
Unit-III	Diodes and Applications covering, Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers with and without Filters.	10 hrs
Unit-IV	Various Number systems, Decimal to Binary and Binary to Decimal Conversion, BCD, Octal and Hexadecimal numbers, Negative numbers representation, 1's, 2's, Complements, Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR Integrated Circuits (ICs)	10 hrs

Internal assessment							
Part A	CIA-I: Unit I, and II	20 Marks					
	CIA-II: Unit III, and IV	20 Marks					
Part B	ESE: Term Exam	60 Marks					

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.
- 2. S.K. Bhattacharya, "Basic Electrical and Electronics Engineering", Pearson Education; Second edition (15 July 2017.
- 3. Electronic Devices and Circuits" Salivahanan, N Suresh Kumar, 3/e, McGraw Hill Publications, 2013.
- 4. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
- 5. Robert L. Boylestad / Louis Nashelsky, " Electronic Devices and Circuit Theory", Latest Edition, Pearson Education.

CO/PO mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1								2
CO2	2	2	2	1		3	2		1		2	1
CO3	3	3	3	2					2			2
CO4	2								1			1
**'3'	in the l	ox for	'High-	level' 1	mannin	g 2 for	r 'Medi	ium-lev	vel' mai	ning 1	for 'Loy	<i>x</i> -level'

**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' mapping

List of Experiments:

- 1. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- 2. Identification various passive components without multimeters.

- 3. V-I Characteristics of Silicon & Germanium PN Junction diodes
- 4. Signal characterization using CRO-Applications
- 5. Diode as clipper and clamper
- 6. V-I Characteristics of Zener Diode
- 7. Characteristics of BJT in Common Emitter Configuration
- 8. Regulated power supply using Transistor and Zenner Diodes
- 9. Half Wave and Full Wave Rectifier with Filter
- 10. Common Emitter BJT Amplifier
- 11. Introduction to Logic Gates

Fundamentals of Industrial Automation (VSSD 102)								
Teaching Scheme	Examination Scheme	Credits al	located					
Theory 3 h/week	+ End of semester Examination-60 marks	Theory+ Pra	ctical -4					
Practical 2 h/week								
Course Prerequisit	e: Knowledge of 10+2 Physics.							
Course Objective:	The main objective of this course is to make the l	earners acqua	inted with					
the conceptual as we	ell as practical knowledge of the fundamentals of	f Industrial Au	utomation.					
It's also necessary f	or the students to realize the various types of Au	tomated syste	ems etc.					
Course Outcomes:	On completion this course, students will be able	e to						
CO1: To understand	and analyze basics of automation systems.							
CO2: To study the v	vorking principles of various machines for autor	nation.						
CO3: To introduce v	various types of automations and work part transp	oort and its me	chanisms.					
CO4: To understand	l working of various automated systems.							
Level	Bachelor							
Course Content:								
Unit -I	Automation and its advantages, goals, types, new	ed, laws and	10 hrs					
	principles of Automation. Elements of Autom	ation. Fluid						
	power and its elements, application of fl	uid power,						
	Pneumatics vs. Hydraulics, benefit and lin	nitations of						
	pneumatics and hydraulics systems, Role of	Robotics in						
	Industrial Automation.							
Unit-II	Manufacturing Automation: Classification a	nd type of	10 hrs					
	automatic transfer machines; Automation in p	art handling						
	and feeding, Analysis of automated flow line	s, design of						
	single and multi-model, Programmable Ma	anufacturing						
	Automation CNC machine tools, Programmable	e robots.						
Unit-III	Automation types: Automated Flow lines,	Methods of	8 hrs					
	Workpart Transport, Transfer Mechanism, Bul	ffer Storage,						
	Control Functions, and Automation for	Machining						
	Operations, Design and Fabrication Consideration	ions.						
Unit-IV	Automated Guided Vehicle Systems, Automa	ited Storage	12 hrs					
	Systems: Storage System Performance,	Automated						
	Storage/Retrieval Systems, Interfacing Ha	ndling and						
	Storage with Manufacturing. Product identifica	tion system:						
	Barcode, KFID etc.							
	Internal assessment							

Part A	CIA-I: Unit I, and II	20 Marks
	CIA-II: Unit III, and IV	20 Marks
Part B	ESE: Term Exam	60 Marks

- 1. KATARIYA SANJAY B, "INDUSTRIAL AUTOMATION SOLUTIONS FOR PLC, SCADA, DRIVE AND FIELD INSTRUMENTS: EASY TO LEARN INDUSTRIAL AUTOMATION", Notion Press; 1st edition (23 May 2020).
- 2. Ravindra Sharma, "Advanced Industrial Automation and Its Applications", Laxmi Publications Pvt Ltd (1 January 2021).
- 3. R.G.Jamkar, "Industrial Automation Using PLC SCADA & DCS" Global Education Limited; second edition (1 January 2018
- 4. Himanshu Kumar, "Advanced Industrial Automation: PLC programming in simplest way with 110 solved examples", Notion Press (1 July 2020.

CO/PO mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	3	3	1								2		
CO2	3	3	3	1					1			2		
CO3	3	3	3	2					2			2		
CO4	3	3	3	2					2			2		
**'3'	**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'													
mann	ino				manning									

mapping								
Basics of Mechanical Systems (VSSD103)								
Teaching Scheme	Examination Scheme	Credits allocated						
Theory 3 h/week	End of semester Examination-60 marks	Theory-3						
Course Prerequisi	te: Knowledge of 10+2 Physics.							
Course Objective:	The main objective of this course is to mak	te the students acquainted with						
the basics of mechanical systems. Preliminary ideas on forces and fluid dynamics are also								
essential to know.								
Course Outcomes: On completion this course, students will be able to								

Course Outcomes: On completion this course, students will be able to

CO1: To understand the basics of various mechanical' systems.

CO2: To study the working principles of various sensors for automation.

CO3: To introduce electrical machines for automations.

CO4: To acquire knowledge on PLC and apply for the development of various auotomated systems.

Level	Bachelor	
Course Content:		
Unit -I	Mechanical Systems: Gears, drives, bearings, pulleys etc.,	10 hrs
	Stress, strain, elastic constraints, stress in circular shaft	l
	subjected to pure torsion only, Riveted and bolted joints.	
Unit-II	Elementary idea of Shear force and bending moment for	10 hrs
	concentrated, uniformly distributed loads simply supported	l
	beam cantilever and overhanging beam, Simple Shear force	1
	and bending moment diagrams, Relationship between shear	l
	force and bending moment	
Unit-III	Classification of Pulleys, Types of Belts, Simple calculation	10 hrs
	of pulley diameter, Classification of Gears, Simple	1

	calculation of number of teeth and speed, Power transmission by solid and hollow shaft	
Unit-IV	Properties of fluids, pressure of fluid and its measurement. Flow of fluids, velocity and discharge, Bernoulli's theorem and its application in venturimeter, flow through pipe, head loss due to friction.	10 hrs

Internal assessment							
Part A	CIA-I: Unit I, and II	20 Marks					
	CIA-II: Unit III, and IV	20 Marks					
Part B	ESE: Term Exam	60 Marks					

- 1. M.P. Poonia & S.C. Sharma, "Basic Mechanical Engineering, Khanna Publishing House
- 2. D.S. Bedi, Strength of Materials, Khanna Publishing House CO/PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												

mapping

Introduction to Robotics (VSSD 104)

Teaching Scheme	Examination Scheme	Credits all	ocated
Theory 3 h/week-	End of semester Examination-60 marks	Theory + Pract	tical -4
Practical 2 h/week			
Course Prerequisit	e: Knowledge of 10+2 Physics.		
Course Objective:	To identify robots and its peripherals for s	satisfactory oper	ration and
control of robots for	industrial and non-industrial applications		
Course Outcomes:	On completion this course, students will be a	ble to	
CO1: list and explai	n the basic elements of industrial robots.		
CO2: analyze robot	kinematics and its control methods.		
CO3: classify the va	rious sensors used in robots for better perform	nance.	
CO4: summarize va	rious industrial and non-industrial application	s of robots.	
Level	Bachelor		
Course Content:			
Unit -I	Robot-Basic concepts, Need, Law, Histo	ory, Anatomy,	10 hrs
	specifications; Robot configurations-cartes	sian, cylinder,	
	polar and articulate. Robot wrist mechanism	, Precision and	
	accuracy of robot		
Unit-II	End effectors-Classification, Types of	Mechanical	10 hrs
	actuation, Gripper design, Robot drive s	system Types,	
	Position and velocity feedback devices-Ro	bot joints and	
	links-Types, Motion interpolation.		
Unit-III	Sensors in robot – Touch sensors-Tactile sense	or – Proximity	10 hrs
	and range sensors. Force sensor-Light sen	sors, Pressure	

			senso	rs, Inti	roducti	on to	Machi	ne Vis	sion an	d Artif	icial	
			Intelli	gence.								
Unit-l	[V		Indus	trial a	pplicati	ions o	f robo	ots, Mo	edical,	Househ	old, 10) hrs
			Enter	tainme	nt, Sp	ace, I	Underw	vater,	Defens	e, Disa	ster	
			mana	gement	. Appli	ication	s, Micr	o and 1	Nanoro	bots, Fu	ture	
			Appli	cations	•							
Internal assessment												
	Part A			CL	A-I: Un	nit I, an	d II			20 1	Marks	
				CIA	-II: Uni	it III, a	nd IV			20 1	Marks	
	Part B			E	SE: Te	rm Exa	ım			60 I	Marks	
Text/	Text/Reference Books:											
1. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial												
	Robotics Technology,											
2.	2. Programming and Applications", Tata –McGraw Hill Pub. Co., 2008.											
3.	Deb.S	S.R an	d Sank	ha Deł	o, "Rob	otics [Techno	logy aı	nd Flex	ible Aut	tomatior	ı", Tata
	McG	raw Hi	ll Publ	ishing (Compa	ny Lin	ited, 2	010.				
4.	Klaft	er.R.D	, Chmi	elewsk	i.T.A, a	and No	oggin's	., "Rot	ot Eng	ineering	: An Int	egrated
	Appr	oach""	, Prenti	ce								
5.	Hall	of Indi	a Pvt. I	.td., 19	94.							
6.	Fu.K	.S, G	onzalez	z.R.C&	Lee.C.	S.G,	"Robot	tics co	ontrol,	sensing	g, visic	on and
	intell	igence	", Tata-	McGr	aw Hil	l Pub.	Co., 20	08		-	-	
7.	Yu. "	Indust	rial Rol	ootics"	, MIR I	Publish	ers Mo	oscow,	1985.			
CO/P	O mapp	ping										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	3		3	2		3			2			2
CO4	3		3	2	2				2			2
**'3'	in the b	oox for	'High-	level'	nappin	g, 2 fo	r 'Medi	ium-lev	vel' map	oping, 1	for 'Lov	v-level'

mapping

	Applied mathematics-I (VSSD105)								
Teaching Scheme	Examination Scheme	Credits allocated							
Theory 3 h/week	End of semester Examination-60 marks	Theory-3							
Course Prerequisite: Knowledge of 10+2 Physics.									
Course Objective: To provide the students with sufficient knowledge of differential									
equations, higher orders, power series and Fourier series, so that it can be used in their									
respective fields.									
Course Outcomes: On completion this course, students will be able to									
CO1: Analyze the b	ehavior of functions by using differential equation	ons concepts.							
CO2: To understand	l second order and higher order differential equa	ations.							
CO3:- To understan	d series solutions and to apply in higher order a	pplications.							
CO4:- Analyze Fou	rier series, partial differential equations and to a	oply in further synthesis.							
Level	Bachelor								
Course Content:									
Unit -I		10 hrs							

	Differential equations of first order & of first degree: Linear													
			form,	reduci	ble to	linear	form,	exact f	form, F	Reducibl	e to			
			exact	form, I	Picard's	s Theor	rem (St	atemer	nt only)					
Unit-l	II		Differ	ential	equati	ons of	secor	nd &	higher	order	with 1	0 hrs		
			consta	ant co	efficien	nts, A	lgebra	of I	Limit,	Continu	lous			
			functi	ons, I	Differer	ntiabili	ty of	a fun	ction,	Algebra	u of			
			deriva	ntives,	Applic	ation	of der	rivative	es, Inci	reasing	and			
			decrea	decreasing functions, Tangents and normal.										
Unit-l	III		Seque	Sequence, Power series, radius of conversions, solution in										
			series	series of second order LDE with variable co-efficient (C.F.										
			only).	only). Regular Single points and extended power series										
			(Frob	Frobenius Method).										
Unit-l	IV	Fourier series, half range series, change of intervals,												
			harmo	onic an	alysis.	Formu	lation a	and clas	ssificat	ion of li	near			
			and q	uasi li	near p	artial o	lifferer	itial eq	uation	of the	first			
order, Lagrange's method for linear Partial Differential											ntial			
Equation of the first order.														
Internal assessment														
Part ACIA-I: Unit I, and II20 Marks								Marks						
	CIA-II: Unit III, and IV 20 Mark							Marks						
	Part B			E	SE: Te	rm Exa	ım			60 1	Marks			
Text/Reference Books:														
1. Erwin Kreyszig, Advanced Engineering Mathmatics, John Wiley.														
2.	B.V.I	Raman	a, High	er Eng	ineerin	g Math	ematic	s, McC	braw – I	Hill.				
3.	Peter	V. 0'l	Neil, A	dvance	d Engiı	neering	; Mathe	matics	, Cenga	ige Lear	ning, Ne	ewDehli		
4.	M Ra	ıy, A T	ext Bo	ok On	Differe	ntial ec	luation	s Stude	ents Fri	ends & (Co., Agi	:a-2		
8.	Robe	rt C. M	lcowen	, Partia	l Diffe	rential	Equati	on Pea	rson Ed	lucation				
9.	Geor	ge F. S	immon	is & S.(G. kran	tz, Difi	terentia	il Equa	tion Ta	ta McGi	raw – H	ill.		
10). R.K.J	lain &	SRK	lyenga	r, Adva	nced E	nginee	ring M	athema	tics, Na	rosa	N .T		
11	I. T An	narnath	ı, An I	Elemen	itary co	ourse in	i partia	l differ	ential e	equation	s, Naros	sa, New		
10	Delhi	l. D	1 7 7 1	D 1	1	0.1	D'.00	. 1	.	T		***11		
12	2. S. G.	Deo a	nd V. I	Kaghav	endra:	Ordina	ar Diffe	erential	Equati	ons, 1 a	ta McGi	aw Hill		
	Pub.	C0., N	ew Del	hı										
CO/F	U mapp		DO3	DO4	DO5	DO6	DO7	DOS	POO	DO10	DO11	PO12		
CO1	2	102	2	1	105	100	10/	FUo	109	roiu	rom	FO12		
	<u></u> р	2	с С	1					1		2	2		
C02	3	3	3	1 2	2				1 2		2	2		
CO_4	2 2	2	с С											
**:27	5	5 	ן כ ווו: דר	2		~ 2 5		1	<u> </u>		for (I	2		
5	in the t	JOX IOP	Hign-	level 1	mappin	g, 2 101		um-lev	ei maj	pping, I	IOT LO	w-level		
mapping														
Leter de cliente D ' (VOOD 100)														

Introduction to Computer Programming (VSSD 106)										
Teaching Scheme	Examination Scheme	Credits allocated								
Theory 2 h/week +	End of semester Examination-60 marks	Theory + Practical-3								
Practical 2 h/week										
Course Prerequisite:	Course Prerequisite: Knowledge of 10+2 Physics.									

Course Objective: This course is written with the primary objective to introduce the C and C++ programming languages. C is a practical and still-current software tool; it remains one of the most popular programming languages in existence, particularly in areas such as embedded systems.

Course Outcomes: On completion this course, students will be able to

CO1: understand and analyze basics of computer Programming.

CO2: writing code that is very efficient and powerful and, given the ubiquity of C compilers. CO3: understand the various operation of Microsoft office.

CO4: To understand and realize the details use of internet for various purposes.

Level	Bachelor									
Course Content:										
Unit -I	Programming and Programming Languag	ges, Flowchart, The	10 hrs							
	C Programming Language, Identifiers, Sy	ymbolic Constants,								
	Declarations, Arithmetic Operations, Rela	ational and Logical								
	Operations, If-Else, 7: Conditional Express	sion, Switch, While								
	Coto	eak and Continue,								
Unit-II	Function Prototypes, Call by reference, (Call by arguments.	10 hrs							
	recursive function. inline function: Functi	on Prototypes, Call	10 1115							
by reference, Call by arguments, recursive function, inline										
	function;									
Unit-III	What is a Pointer? Pointer Syntax, Po	inters and Arrays,	10 hrs							
Pointer Arithmetic, Return Values and Pointer, Pointers to										
	Pointers, Function Pointers, Dynamic M									
	Array initialization, Unaracter Arrays and Strings, Strings									
	dimensional Arrays									
Unit-IV	Formatted IO: printf scanf string formatting: File IO: 10 hrs									
	Opening and Closing Files. Standard I	10 1115								
	Operations; Introduction to User	define datatype,								
	Fundamentals of the object-oriented appr	oach.								
	Internal assessment									
Part A	CIA-I: Unit I, and II	20 Marks	5							
	CIA-II: Unit III, and IV	20 Marks	5							
Part B	ESE: Term Exam	60 Marks	5							
1 W Deierence Bo	OKS:	DILL L comin a (2004)							
1. V. Kajarama 2 E Balagur	usany Programming In Ansi C 3rd	edition Tata Ma	Graw Hill							
Publication	New Delhi 2004	cultion, Tata Mic	Olaw-IIII							
3. Walter Sav	itch. Problem Solving with C++: Global	Edition. 9th edition	n. Pearson							
Education, 1	November 2014.	,	,							

- 4. Robert Lafore, Object Oriented Programming In C++, 4th edition, Pearson Education India (2004
- 5. Darrell W. Hajek, Introduction to Computers, independently published (May 12, 2023)

CO/PO	mapping
-------	---------

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	

CO1	3	3	3	1								2
CO2		3	3	1	3		1		1			2
CO3	3		3	2					2			2
CO4	3	3	3	2					2			1
**'3'	**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'											

mapping

English (La	nguage and Communication Writing Skills	-I) (VSSD 107)
Teaching Scheme	Examination Scheme	Credits allocated
Theory 3 h/week	Theory-3	
Course Prerequisite:	Knowledge of 10+2 Physics.	
Course Objective: The	e main objective of this course is to make the	students skilled in writing
and communication ski	ills which is essential in near future for job pu	irposes.

Course Outcomes: On completion this course, students will be able to

CO1: understand how to make sentences and grammatical mistakes etc.

CO2: improve writing skills.

CO3: spoken English

Level	Bache	lor	
Course Content:			
Unit -I: Grammar	i.	Phrases, clauses and elements of a sentence	13 hrs
and its Usage	ii.	Articles, Tenses and Modals	
Unit-II: Oral and	i.	Letter Writing-Formal and Informal	12 hrs
Written	ii.	Short Presentation, so as to get across one's	
Communication		perspective, 200-250 words	
Unit-III: Forms of	i.	Extract from Abdul Kalam's Wings of Fire, Section	15 hrs
Writing		One : Orientation	
	ii.	Resume Writing and Job Application.	

Internal assessment										
Part A	CIA-I: Unit I, and II	20 Marks								
	CIA-II: Unit III, and IV	20 Marks								
Part B	ESE: Term Exam	60 Marks								

Text/Reference Books:

- 1. Thomson, A.J. & Martinet: A Practical English Grammar; Oxford University Press.
- 2. Hyland, Ken: Second Language Writing; University of Michigan Press.
- 3. Gabor Don: How to start conversations and make friends; New York: Fireside
- 4. Krishnaswamy, N: Modern English A Book of Grammar, Usage and Composition, Macmillan India Ltd.
- 5. Quirk and Greenbaum: A University Level Grammar of English, Pearson.

CO/P	CO/PO mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1								2	
CO2	3	3	3	1					1			2	
CO3	3	3	3	2					2			1	

CO4	3	3	3	2					2			2
**'3'	in the b	ox for	'High-l	level' n	napping	g, 2 for	'Mediu	ım-leve	el' map	ping, 1 f	or 'Low	-level'
mappi	ng											

Laboratory Project -I (VSSD 108)								

2nd Semester

Sensor and Transducer (VSSD 109)										
Teaching Schem	ne	Examination Scheme	Credits al	located						
Theory 3 h/weel	k +	End of semester Examination-60 marks	Theory-4							
Practical 2h/week										
Course Prerequi	site:	Knowledge of 10+2 Physics.								
Course Objective	e:									
• To make stude	ents f	Camiliar with the constructions and working p	principle of diff	ferent typ						
es of sensors a	and tr	ansducers.								
• To make stude	ents a	ware about the measuring instruments and the	ne methods of i	measurem						
ent and the use	e of c	lifferent transducers.								
Course Outcome	es: Or	n completion this course, students will be abl	e to							
Level	Level Bachelor									
Course										
Content:										
Unit -I	nit-I Basics of Measurement – Classification of errors – Error 10 hrs									
analysis – Static and dynamic characteristics of transducers –										
Performance measures of sensors – Classification of sensors –										
Sensor calibration techniques – Sensor Output Signal Types:										
Motion Sensors – Potentiometers, Resolver, Encoders –										
Optical. Magnetic, Inductive. Capacitive. LVDT – RVDT –										
	Sync	chro – Microsyn, Accelerometer., – GPS, Blu	ietooth.							
Unit-II	Strai	in Gage, Load Cell, Magnetic Sensors -typ	es, principle,	10 hrs						
	requ	irement and advantages: Magneto resistive –	Hall Effect –							
	Curr	rent sensor Heading Sensors – Compass	, Gyroscope,							
	Incli	nometers.	9 1 4							
Unit-III	Phot	to conductive cell, photo voltaic, Photo resi	stive, LDR –	10 hrs						
	Fibe	r optic sensors – Pressure– Diaphragm, Pi	ezoelectric –							
	Tact	ile sensors, Temperature – IC, Therm	nistor, RTD,							
	Ther	mocouples.								
Unit-IV	Acou	ustic Sensors - flow and level measureme	nt, Radiation	10 hrs						
	Sens	sors - Smart Sensors - Film sensor, ME	MS & Nano							
	Sensors, LASER sensors, Amplification – Filtering – Sample									
	and	Hold circuits - Data Acquisition: Single	channel and							
	mult	cichannel data acquisition – Data logging -	applications -							
	Auto	omobile, Aerospace etc.								
		Internal assessment								
Part A		CIA-I: Unit I, and II	20 Mar	ks						

	CIA-II: Unit III, and IV	20 Marks
Part B	ESE: Term Exam	60 Marks

- 1. D.V.S. Murty, SENSORS AND TRANSDUCERS, Prentice Hall India Learning Private Limited.
- 2. Dr R. Krishna Priya, Dr. Sushamma Chako, and Mr. Suhail Ahmed, SENSORS AND TRANSDUCERS, Notion Press
- 3. D. Patranabis, Sensors and Transducers, PHI Learning; 2nd edition (1 January 2003)

4. Livin P Wilson, Sensors and Transducers, Notion Press (20 March 2023)

CO/PO mapping

00/10	FF8											
	PO1	PO	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12
		2	3								11	
CO1	3	3	3	1								2
CO2	3		3	1					1			2
CO3		3	3	2	2				2			2
CO4	3	3	3	2					2			2
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												
mapping												
List of	Experi	ments	:									

Fundamentals of Artificial Intelligence (VSSD 110)								
Teaching Scheme	Examination Scheme	Credits allocated						
Theory 3 h/week +	Theory-3							
Practical 2 h/week								
Course Prerequisite: Knowledge of 10+2 Physics.								

Course Objective:

- To make students familiar with basics of Artificial Intelligence etc.
- To develop the problem-solving ability

Course Outcomes: On completion this course, students will be able to

- Design user interfaces to improve human-AI interaction and real-time decisionmaking.
- Design user interfaces to improve human-AI interaction and real-time decisionmaking.
- Explain the main concepts, models, technologies, and services of cloud computing, the reasons for the shift to this model, and its advantages and disadvantages.

Level	Bachelor								
Course Content:									
Unit -I	Definition of AI, birth of AI, brief history, Turing test,	10 hrs							
	Types of environment, Types of agents, PEAS								
	(Performance measure, Environment, Actuators, Sensors),								
	Introduction to searching, State Space, SAGP (State,								
	Action, Goal test, Path cost), DFS, BFS (Completeness,								
	Time complexity								
Unit-II	Constrain Satisfaction Problems examples, Approaches to	10 hrs							
	solve CSPs, Test and generate method, back tracking.								
	Game Playing, Optimal decision in games, Min Max								

	algorithm, Evaluation functions, Int	troduction to						
	Propositional Logic and First Order I	Logic, Syntax,						
	Substitution							
Unit-III	Probabilistic Reasoning, Review of Proba	ability Theory, 10 hrs						
	Probabilistic Inference Rules, Bayes Theore	m, examples of						
	Bayes theorem, Introduction to Learning,	Taxonomy of						
	Learning Systems, Concept Learning, Fin	d-S algorithm,						
	Candidate Elimination Algorithm.							
Unit-IV	Introduction to Neural Networks, Introduction to Neural 10 hrs							
	Networks, Biological Neural Networks, A	rtificial Neural						
	Networks, Perceptron, Perceptron Learnin	ng Rule, Delta						
	Rule, Applications of Neural Networks.							
Internal assessmen	t							
Part A	CIA-I: Unit I, and II	20 Marks						
	CIA-II: Unit III, and IV	20 Marks						
Part B	ESE: Term Exam	60 Marks						

- 1. Dr. K. Saraswathi Dr. A Rajasekaran, Dr. T. Dinesh Kumar, Fundamentals of Artificial Intelligence, Book Rivers (25 September 2023).
- 2. Stuart Russel and Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Education; 4th edition.
- 3. Reema Thareja, Artificial Intelligence: Beyond Classical AI, Pearson Education.

CO/PO mapping

00/1												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	1	2	3	2					2			2
CO4	3	3	3	2					2			2
**'3'	**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'											

mapping

Kinematics and Dynamics of Robotics (VSSD111)									
Teaching		Examination Scheme	Credits allocated						
Scheme									
Theory	3	End of semester Examination-60 marks	Theory-3						
h/week+									
Tutorial									
1h/week									
Course Prer	equ	isite: Knowledge of 10+2 Physics.							
Course Obje	ectiv	ze:							
 To make students familiar with the constructions and working principle of different typ es of sensors and transducers. 									

• To make students aware about the measuring instruments and the methods of measurem ent and the use of different transducers.

Course Outcomes: On completion this course, students will be able to

Level Bachelor												
Course												
Content:												
Unit -I	F	osition	and	orientat	tion of	a rigi	d body	, Но	mogeneo	ous 8	hrs	
	t	ransfor	mation	s, Repre	esentati	on of jo	oints, lir	nk rep	resentati	ion		
	u	ising D	-H para	ameters	, Examj	ples of l	D-H par	amete	ers and li	ink		
	t	ransfor	ms, dif	ferent ki	nds of a	ictuator	s – stepp	er, D	C servo a	ind		
	b	orushles	ss moto	ors, Pur	pose of	f sensor	rs, inter	nal a	nd exter	nal		
	S	sensors, common sensors										
Unit-II	I	ntroduc	ction,	Direct	and	inverse	kinem	atics	probler	ns, 1	2 hrs	
	E	Exampl	es of	kinema	tics of	comm	on seri	al ma	anipulato	ors,		
	v	vorkspa	ace of a	serial r	obot, Ir	nverse k	inemati	cs of	constrair	ned		
	а	nd redu	ındant ı	robots; A	Active a	ind pass	ive joint	ts, Co	nstraint a	ind		
	1	oop-clc	sure ec	luations	, Direct	kinema	atics pro	blems	5.			
Unit-III	N	Aass an	d inerti	a of link	ks, Lagr	angian t	formulat	tion fo	or equation	ons 1	0 hrs	
	C	of motio	on for s	serial ar	nd paral	llel mar	nipulator	rs, Ge	neration	of		
	s	ymboli	c equa	tions of	motion	n using	a comp	outer,	Simulati	ion		
	(direct a	nd inve	erse) of	dynami	c equat	ions of 1	notio	n.			
Unit-IV Models of flexible links and joints, Kinematic modeling of 1									0 hrs			
	n	nulti-lii	nk flex	ible rob	oots, Dy	namics	and co	ontrol	of flexi	ble		
	1	ink mai	nipulato	ors, Nur	nerical	simulati	ions resu	ılts, E	xperime	nts		
	v	vith a p	lanar tv	vo-link	flexible	e manip	ulator.		1			
				.								
			~	Inter	nal ass	essmen	t		• •			
Part A			C	IA-I: U	nit I, an	d II			20	Marks	5	
			CIA	A-II: Un	it III, aı	nd IV			20	Marks	5	
Part B]	ESE: Te	erm Exa	ım			60	Marks	5	
Text/Referen	ce Bo	ooks:										
1. Ch	ang I	.iu, "Fo	oundation	ons of N	AEMS"	, Pearso	on; 2nd e	edition	n (26 Ma	y 201	1)	
2. Ga	berie	l M.Re	biz, "R	F MEM	IS Theo	ory,Desi	gn and '	Techr	ology",	John V	Wiley &	
So	ns.											
3. Eu	n Sol	c Kim,	Funda	mentals	of Mic	roelecti	omecha	nical	Systems	(MEN	MS), 1st	
Ed	ition.											
CO/PO mappi	ng		n	n					1	1		
PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO	PO12	
	2							9		11	-	
CO1 3	3	3	1								2	
CO2 2	3	2	1					1			2	
CO3 2	1	3	2					2			2	
CO4 3	3	3	2					2			2	
**'3' in the bo	ox for	· 'High	-level'	mapping	g, 2 for	'Mediu	m-level	' map	ping, 1 fo	or 'Lo	w-level'	
mapping												
List of Experiments:												
List of Experiments.												

	Professional Ethics in Engineering (VSSD112)									
Teaching	Examination Scheme	Credits allocated								
Scheme										

Theory 3	End of semester Examination-60 marks	Theory-3			
h/week+		5			
Tutorial					
1h/week					
Course Prereau	uisite: Knowledge of 10+2 Physics.				
Course Objecti	ve:				
• To make stu	dents familiar with the constructions and working t	orinciple of dif	ferent typ		
es of sensors	and transducers	principle of an	ferent typ		
• To make stu	dents aware about the measuring instruments and t	ha mathada af	maggirom		
• TO make stur	as of different transducers	lie methous of	measurem		
Course Outcom	se of different transducers.	1			
Course Outcom	ies: On completion this course, students will be ab				
T	D 1 1				
Level	Bachelor				
Course					
Content:					
Unit -I	Morals, values and Ethics – Integrity – Work et	hic – Service	8 hrs		
	learning – Civic virtue – Respect for others – Livi	ng peacefully	0 1115		
	- Caring - Sharing - Honesty - Courage - Va	aluing time _			
	Cooperation - Commitment - Empathy - Self	confidence _			
	Character Spirituality Introduction to Voga at	nd meditation			
	for professional excellence and stress management	nu mountation			
I Luit II	Songag of Engineering Ethics Veriety of m	n amal igguag	12 hm		
Unit-II	Senses of Engineering Ethics, – variety of m	oral issues –	12 mrs		
	Types of inquiry – Moral dilemmas – Moral	Autonomy –			
	Kohlbergs theory – Gilligans theory – Co	nsensus and			
	Controversy – Models of professional roles - 1	heories about			
	right action – Self-interest – Customs and Relign	ion – Uses of			
	Ethical Theories.				
Unit-III	Engineering as Experimentation – Engineers a	s responsible	8 hrs		
	Experimenters – Codes of Ethics – A Balanceo	d Outlook on			
	Law.				
Unit-IV	Safety and Risk – Assessment of Safety and Risk -	- Risk Benefit	12 hrs		
	Analysis and Reducing Risk - Respect for	Authority –			
	Collective Bargaining - Confidentiality - Conflic	cts of Interest			
	- Occupational Crime - Professional Rights - Em	ployee Rights			
	- Intellectual Property Rights (IPR) - Discrimina	tion.			
	Internal assessment				
Part A	CIA-I: Unit I, and II	20 Ma	ırks		
	CIA-II: Unit III, and IV	20 Ma	ırks		
Part B	ESE: Term Exam	60 Ma	rks		
Text/Reference	Rooks:	00 111	1110		
1 V S	BAGAD Professional Ethics in Engineering (V	MECH VI.	rivil VIII-		
	F/FFF/CSF - 2013 course) Technical Publication	ne			
2 Shirley Mathew PROFESSIONAL COMMUNICATION AND ETHICS I For					
First Vear Degree Course in Engineering - Semester 2 - University of Mumbai					
Public Course in Engineering - Semester 2 - University of Mumbal Departments 21 December 2010 Nigeli Drekeshan, Eight Edition (21 December					
raperoack – 51 December 2019, Niran Flakashan; First Edition (51 December 2010)					
2019	<i>J</i> .				
UU/FU mapping					

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO	PO12
		2							9		11	
CO1	3	3	3	1								2
CO2	2	3	3	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	1	2					2			1
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												
mapping												

	Basics of Welding Technology (VSSD 113)					
Teaching Scheme	Examination Scheme	Credits a	llocated			
Theory 3 h/week+	End of semester Examination-60 marks Theory-3					
Course Prerequisite: k	Knowledge of 10+2 Physics.					
Course Objective:						
• To make students fa	miliar with the constructions and working princi	ple of differ	ent types			
of sensors and trans	ducers.					
• To make students av	ware about the measuring instruments and the me	ethods of me	asurement			
and the use of diffe	rent transducers.					
Course Outcomes: On	completion this course, students will be able to					
•						
Level	Bachelor					
Course Content:						
Unit -I	GAS AND ARC WELDING PROCESSES:		10 hrs			
	Fundamental principles Air Acetylene	welding,				
	Oxyacetylene welding, Carbon arc weldin	g,Shielded				
	metal arc welding, Submerged arc welding, T	IG & MIG				
	welding, Plasma arc welding and Electroslag welding					
	processes - advantages, limitations and applications					
Unit-II	RESISTANCE WELDING PROCESSES:10 hrs					
	Spot welding, Seam welding, Projection welding,					
	Resistance Butt welding, Flash Butt welding,	Percussion				
	welding and High frequency resistance welding	g processes				
	- advantages, limitations and applications.					
Unit-III	SOLID STATE WELDING PROCESSES:		10 hrs			
	Cold welding, Diffusion bonding, Explosive	e weiding,				
	Ultrasonic weiding, Friction weiding, Forgewe	duanta goo				
	limitations and applications	uvallages,				
Unit_IV	OTHER WELDING PROCESSES:		10 hrs			
	Thermit welding Atomic hydrogen welding	Electron	10 1115			
	beam welding. Laser Beam welding. Friction st	ir welding.				
	Under Water welding. Welding automation in	aerospace.				
	nuclear and surface transport vehicles	r,				
	·					
	Internal assessment					
Part A	CIA-I: Unit I, and II	20 M	larks			
CIA-II: Unit III, and IV 20 Marks						

Part B Text/Reference Books:

1. Dr. R.S. Parmar, Welding Processes and Technology, Khanna Publishers; Classic Edition (1 January 1996).

60 Marks

ESE: Term Exam

2. Karen Ruth, Welding Basics: An Introduction to Practical & Ornamental Welding, Cool Springs Press (1 September 2003).

CO/PO	mapping

CO/I O mapping												
	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12
			3								11	
CO1	3	3	3	1								2
CO2	3	3	3	1					1			1
CO3	2	2	3	2					2			2
CO4	3	2	3	2					2			2
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												
mapping												

2nd Year

3rd Semester

	Energy and Environment (VSSD 201)		
Teaching Scheme	Examination Scheme Credits allocated		
Theory 3 h/week	End of semester Examination-60 marks	Theory-3	
Course Prerequisite: Kn	nowledge of 10+2 Physics.		
Course Objective:			
• To make students fam	iliar with the constructions and working princip	ple of differe	ent types
of sensors and transdu	icers.		
• To make students awa	are about the measuring instruments and the me	thods of me	asurement
and the use of differe	nt transducers.		
Course Outcomes: On co	ompletion this course, students will be able to		
•			
Level	Bachelor		
Course Content:			
Unit -I	Energy and power, forms of energy, prima	ary energy	10 hrs
	sources, energy flows, world energy produ	uction and	
	consumption, Key energy trends in India:	Demand,	
	Electricity, Access to modern energy, Energy	production	
	and trade, Factors affecting India's energy dev	velopment:	
	Economy and demographics Policy and in	nstitutional	
	framework, Energy prices and affordability,	Social and	
	environmental aspects, Investment.		
Unit-II	Thermal energy storage methods, Energ	y saving,	10 hrs
	Thermal energy storage systems; Principles	of Energy	
	Management, Energy demand estimation	n, Energy	
	pricing, Multidisciplinary nature of env	ironmental	
	studies- Definition, scope and importance,	Need for	
	public awareness.		

Unit-III	Definition, Cause, effects and control measures of - Air	10 hrs				
	pollution, Water pollution, Soil pollution, Marine					
	pollution, Noise pollution, Thermal pollution and					
	Nuclear hazards, Solid waste Management, Disaster					
	management Role of an individual in prevention of					
	pollution, Pollution case studies.					
Unit-IV	Climate change, global warming, acid rain, ozone layer	10 hrs				
	depletion, nuclear accidents and holocaust. Case Studies.					
	Wasteland reclamation, Consumerism and waste					
	products, Environment Protection Act, Air (Prevention					
	and Control of Pollution) Act, Water (Prevention and					
	control of Pollution) Act.					

Internal assessment					
Part A	CIA-I: Unit I, and II	20 Marks			
	CIA-II: Unit III, and IV	20 Marks			
Part B	ESE: Term Exam	60 Marks			

- 1. V K Ahluwalia, Energy and Environment, The Energy and Resources Institute, TERI (6 June 2019).
- 2. Kogent Learning Solutions Inc., Energy, Environment, Ecology and Society, Dreamtech Press (1 January 2012).
- 3. Anshul Vardhan, Energy Sustainability and Environment, Notion Press (31 October 2018)

CO/PO mapping

Corr o mupping												
	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO12
			3								11	
CO1	3	3	3	1								2
CO2	2	3	3	1					1			2
CO3	3	3	3	2					2			2
CO4	3	1	3	2					2			2
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												
mapping												

	Electrical Machine for Automation (VSS	D 202)					
Teaching Scheme	Examination Scheme	Credits allocated					
Theory 3 h/week +	End of semester Examination-60 marks	Theory-4					
Practical 2 h/ week							
Course Prerequisite:	Course Prerequisite: Knowledge of 10+2 Physics.						
Course Objective: The second s	ne main objective of this course is to make	the students acquainted with					
the basics of electric	cal machines for automation. Preliminary	v ideas on stepper motors,					
servomotors, DC moto	ors, but geared and linear motors are also es	ssential to know.					
Course Outcomes: O	n completion this course, students will be a	ble to					
CO1: To understand a	nd analyze the basics of stepper motor and	its applications.					
CO2: To understand concept of the servomotor and its application.							
CO3: To introduce permanent magnet brushless dc motor and synchronous motor and its							
applications for automations.							

CO4: To acquire knowledge of geared motor and linear motor for the development of various automated systems.

Level	Bachelor	
Course Content:		
Unit -I	STEPPER MOTORS: Constructional features – Principle	10 hrs
	of operation - Types, Hybrid Stepper motor. Modes of	
	Excitation – Static and Dynamic characteristics of stepper	
	motors - introduction to Drive systems, Sizing of stepper	
	motors - Applications.	
Unit-II	SERVOMOTORS: Types - Constructional features -	10 hrs
	Principle of operation - Feedback system - Sizing of	
	servomotors – Applications.	
Unit-III	PERMANENT MAGNET BRUSHLESS DC MOTORS:	10 hrs
	Principle of operation – Types, control of BLDC Motors-	
	Applications. PERMANENT MAGNET	
	SYNCHRONOUS MOTORS: Principle of operation,	
	control of PMSM Motors - Applications.	
Unit-IV	GEARED MOTORS: Design Principle – Types of	10 hrs
	Gearboxes – Selection of a Gear Unit – Operation Factor –	
	Equivalent PowerFactors that affect operation factor	
	Geared Motor Applications	
	LINEAR MOTORS: Linear Induction motor classification	
	- Construction - Principle of operation - DC Linear motor	
	(DCLM) types -DCLM Control applications - Linear	
	Synchronous motor (LSM) – Types–Applications.	

Internal assassment						
Part A	CIA-I: Unit I, and II	20 Marks				
	CIA-II: Unit III, and IV	20 Marks				
Part B	ESE: Term Exam	60 Marks				

Text/Reference Books:

- 1. Kenjo T, Stepping Motors and their Microprocessor Controls, Clarendon Press London, 2003.
- 2. J. R. Hendershot, Timothy John Eastham Miller, Design of Brushless Permanentmagnet Machines ,Motor Design Books, 2010.

References:

- 1. Jacek F. Gieras, Zbigniew J. Piech, BronislawTomczuk, Linear Synchronous Motors: Transportation and Automation Systems, CRC Press.New York, 2011.
- 2. BonfiglioliRiduttori, Gear Motor Handbook, Springer, 1995.
- 3. WilfriedVoss, A Comprehensible Guide to Servo Motor Sizing, Copperhill Media, 2007.

CO/P	CO/PO mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	2	2	3	2					2			2
CO4	3	3	3	2					2			2

**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' mapping

	Manufacturing Technology (VSSD 203)								
Teaching Scheme	Examination Scheme	Credits all	ocated						
Theory 3 h/week	End of semester Examination-60 marks	Theory-3							
Course Prerequisite: Knowledge of 10+2 Physics.									
Course Objective: T	Course Objective: The main objective of this course is to make the students acquainted with								
the basics of manufac	turing technology. Preliminary ideas on force	s and fluid dyr	namics are						
also essential to know									
Course Outcomes: On completion this course, students will be able to									
CO1: To understand	and analyze basics of Manufacturing Technol	ogy with meta	l shaping-						
smithy and sheet meta	l working.								
CO2: To introduce the	e various welding and riveting methods and too	ols.							
CO3: To study the wo	rking principles of foundry pattern and mouldi	ng.							
CO4: To acquire know	vledge on melting and pouring of metals and al	loys.							
Level	Bachelor								
Course Content:									
Unit -I	GENERAL PROCESS: Classification and	d elementary	10 hrs						
	idea of metal forming processes on the	basis of the							
	properties of deformability (Plasticity), f	usibility and							
	divisibility viz., Rolling, Forging, Drawing, F	Extruding.							
	Metal Fabrication								
	(A) Metal Shaping-Smithy: Operations involv	ed (concept							
	only). Tool and equipment used (Names, si	ize.							
	specification for identification only),	,							
	(B) Sheet metal Working-Tools and operation	: Operations							
	involved (Names and concept only, Sheet	metal joints							
	Tools and equipment used (Name, size, sp	ecifications							
	for identification only)								
Unit-II	TESTING OF WELDS & RELEVENT	WELDING	10 hrs						
	CODES: (a) Destructive methods (b) No	on-destructive							
	methods-visual, X-ray, Y-ray, Magnet	ic particles,							
	fluorescent, penetrant and ultrasonic testing.	-							
	(A) Metal Joining During Fabrication-								
	(a) Permanent Joining: (i) Welding methods	s (ii) Electric							
	welding								
	(b) Soldering & Brazing:Its concept, com	parison with							
	welding as joining method and classification	-							
	(B) Riveting- its comparison with weldin	g as joining							
	method. (ii) Rivets and Materials.								
	(C) Familiarity with the Use of Various T	ools Used in							
	Mechanical Engineering Workshop (a)	Marking &							
	Measuring Tools	_							
Unit-III	FOUNDRY PRACTICE PATTERN & MO	DULDING:	10 hrs						
	The pattern materials used, Types of pattern a	llowances							
	and pattern layout, Colour scheme patterns de	efects, Types							
	of cores and their utility.								

	Moulding and Pouring: Classification of mould materials according to characteristics, Types of sands and their importance test, parting powders and liquids, Sand mixing preparation, Moulding defects.	
Unit-IV	MELTING AND POURING : Brief idea of refractory material and fluxes, Fuels and metallic materials used in foundry. Melting furnaces used in foundry such as pit furnace, Tilting and cupola furnaces, their construction and operation, metals and alloys. Additions to molten metal, Closing and pouring of the moulds.	10 hrs

Internal assessment

Part A	CIA-I: Unit I, and II	20 Marks							
	CIA-II: Unit III, and IV	20 Marks							
Part B	ESE: Term Exam	60 Marks							

Text/Reference Books:

- 1. Workshop Technology, vol.1, Hazra & Chaudhry
- 2. Workshop Technology, Vol.1, BS Raghuvanshi
- 3. Karyashala Takniki, JK Kapoor

CO/PO mapping

CO/P	CO/FO mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2
**'3'	**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'											

mapping

IOT & Embedded System (VSSD 204)								
Teaching Scheme	Examination Scheme	Credits allocated						
Theory 3 h/week +	End of semester Examination-60 marks	Theory-4						
Practical 2 h/week								

Course Prerequisite: Knowledge of embedded system.

Course Objective: The main objective of this course is to make the students acquainted with the basics of embedded systems. Preliminary ideas on architecture of microcontroller, C programming and simulation are also essential to know.

Course Outcomes: On completion this course, students will be able to

CO1 To acquire knowledge of basic function, characteristic and application of Embedded C Software in the modern embedded systems and on the function and area of application of Arduino and Microcontroller based embedded systems used in modern electronics control and Artificial Intelligence Systems.

CO2 To understand the Embedded C programming simulation model for Arduino automation.

CO3 To introduce PIC 18 Architecture and its programming.

CO4 To acquire knowledge on I/O interfacing, Programming and Simulation model.

Level	Bachelor						
Course Content:							
Course Content: Unit -I Unit -I	Embedded System Design Basics: Introd embedded systems, Components of embedded Comparison among 8051, Arduino and PIC Architecture review of Arduino Uno board: In to ARDUINO, ARDUINO History and Fam Nano, Bluetooth, Lilypad, Pin configuration and architecture Of A microcontroller, Study of an Arduino Boa Supply, Power Connectors, Analog Input Connections Embedded C programming simulation In Arduino: Introduction to Embedded C and step Arduino Integrated development platform commands for Arduino Functions, Parameters,	duction to ed system, ntroduction ily- Mega, Tmega328 rd- Power ts, Digital model for ps to install m, Basic Variables-	10 hrs 10 hrs				
	Global, local and static, Numeric variables- Boolean, # Define directives, Looping stateme while, Logical Operators, Mathematical operators values, Coding styles.	Int, Float, ents-if, for, ors, Return					
<u>Unit-III</u>	PIC 18 Architecture and its programming:10 hrs• PIC 18 architecture and assembly level programming – The WREG register in PIC, PIC file register, using instruction with the default access bank, Status register, PIC data format and directives, Branch, call and time delay loop,10 hrs• Proteus simulation model for PIC • PIC I/O port programming • ADC programming10 hrs						
Unit-IV	 I/O interfacing , Programming and Simulation LED interfacing with Arduino /PIC - Circul program for LED blinking. 2Single switch and seven segment inter Arduino /PIC - Circuit diagram. Sensors (Temperature, Light, Proximity) and interface with Arduino /PIC Circuit diagram. Interfacing with DC motor with Arduino /Fic control program with direction change: Circuit program, Proteus simulation model. 	on model: it diagram, rface with LED/LCD , program. PIC –speed it diagram,	10 hrs				
	Internal assessment						
Part A	CIA-I: Unit I, and II	20 Ma	arks				
	CIA-II: Unit III, and IV	20 Ma	arks				
Part B	ESE: Term Exam	60 Ma	arks				
Text/Reference Book 1. Arduino-Based Sushabhan Ch	ts: d Embedded System, Rajesh Singh, Anita Gehlot, oudhary, Taylor& Francis.	, Bhupendra	Singh and				

Sushabhan Choudhary, Taylor& Francis.

- 2. Fundamentals of Microcontrollers and Applications in Embedded System (with the PIC 18 microcontroller family), R. Gaonkar, Penram International Publishing.
- 3. Embedded C, Pont, Michael J, Addison-Wissley professional.
- 4. Getting Started with Arduino: The Open Source Electronic Prototyping Platform, Massimo Banzi, Shroff Publishers & Distributors Pvt Ltd, 2014.
- 5. Programming Aurdino: Getting Started with Sketches, Simon Monk, McGraw-Hill Education, Second Edition, 2016.
- 6. Arduino Cookbook, Margolis, Shroff/O'Reilly Publication, 2nd edition, 2012.
- 7. Embedded Systems, Himanshu Dave, Parag Dave, Pearson (ISBN: 9789332543522).
- 8. The Essential PIC 18 Microcontroller, Sid Katzen, Springer.
- 9. PIC Microcontroller and Embedded System using Assembly and C for PIC 18, M A Mazidi, R D Mckinlay and D Causey, Pearson.

CO/PO	mapping
00/10	

00/1	corromapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			1
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2
**'3'	**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'											

mapping

Γ									
	Industrial Safety Practices (VSSD 2	205)							
Teaching Scheme	Examination Scheme	Credits allo	cated						
Theory 3 h/week+	End of semester Examination-60 marks	Theory-3							
Tutorial 1h/week									
Course Prerequisite: Knowledge of welding technology.									
Course Objective:	The main objective of this course are as follo	ows:							
 Industrial sat 	fety is needed to check all the possible chan	ces of accidents for	preventing						
loss of life an	nd permanent disability of any industrial emp	loyee, any damage	to machine						
and material									
• It is needed t	o eliminate accidents causing work stoppage	e and production los	SS.						
• It is needed	to reduce workman's compensation, insur	ance rate, and all	the cost of						
accidents.									
 It is needed t 	o achieve better morale among industrial en	nlovees							
Course Outcomes:	On completion this course, students will be	able to							
• Analyze the	effect of release of toxic substances								
 Understand t 	he industrial laws regulations and source m	odels							
• Onderstand t	atheds of movention of fire and evaluations	oucis.							
• Apply the fit									
• Understand t	he relief and its sizing methods.								
Level	Bachelor								
Course Content:									
Unit -I	History of Safety. Movement in India and abroad. Need for 10 h								
	safety, legal, humanitarian, economic and social								
	considerations, Role of management in	Industrial Safety.							

Safety Management - Principles & practices. National policy

on Safety, Health & Environment at workplace.

Unit-I	I		Accident, Incident, injury, hazard, risk, danger, unsafe acts, unsafe conditions, dangerous occurrences, Type of Accidents, etc. Accident Prevention: Theories of accident causation; H. W. Henrich, Frank bird and Multiple causation theories of accident occurrences. Principles of accident prevention.										
Unit-I	II		Under	rstand i	mporta	nce of	plant a	nd work	station	design	in 10	hrs	
			safety conce handl	safety, Significance of housekeeping in OSH, understand concepts of safety in machine guarding, use of tools, material handling and storage, appraise hazard associated with hot									
Unit-I	V		Under	stand of	<u>k.</u> element	s of Ei	nvironn	nent Ma	inageme	ent syste	em 10	hrs	
			and e	cosyste	m, Eval	luate fa	ctors co	ontributi	ing wat	er, air, so	oil		
			and r	noise	polluti	on and	d their	effects	s, Appl	ly vario	us		
			techni	ques	of En	vironm	ental	monito	ring a	nd was	ste		
			manag	gement	, Fulfil	Sustain	ability	reportin	g requi	rements.			
Intornal assassment													
Part A CIA-I: Unit L and II 20 Marks													
CIA-II: Unit III. and IV 20 Mark							Iarks						
	Part B			I	ESE: Te	erm Exa	ım			60 N	Iarks		
Text/l	Referer	ice Boo	ks:										
1.	KATAI	RIYA S	SANJA	Y B, "	INDUS	TRIAL	AUT(OMATI	ON SO	LUTION	NS FOR	e PLC,	
	SCADA	A, DRIV	VE AN	D FIEI	LD INS		$1 \in \mathbb{N}$: EAS)	TO L	EARN I	INDUS.	IRIAL	
2	AU I UI Ravindi	VIATIO ra Shar	'm , no ma "/	uon Pr Advanc	ed Ind	edition ustrial	$\Delta utom$	ay 2020). nd Its	Applica	tions"	Lavmi	
2.	Publica	tions Py	vt Ltd (1 Janua	rv 2021	().	Autom	ation a	nu no	пррпса		Laxiiii	
3.	R.G.Jar	nkar, "	Industr	ial Aut	omation	n Using	g PLC	SCADA	4 & D	CS" Glo	bal Edu	acation	
	Limited	l; secon	d editic	on (1 Ja	nuary 2	018							
4.	Himans	hu Kun	nar, "A	dvance	d Indust	trial Au	tomatic	on : PLC	progra	mming i	n simple	est way	
	with 11	0 solve	d exam	ples", l	Notion l	Press (1	July 2	020).					
CO/PO	CO/PO manning												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1								2	
CO2	3	3									2		
CO3	3	2 2 2 2 2 2 2 2									2		
CO4	3	3	3	2	<u> </u>				2			2	
**'3'	in the b	ox for '	High-le	evel' m	apping,	2 for '	Mediur	n-level'	mappir	ng, 1 for	Low-le	evel'	
mappi	ing												

Electrical Drives and Control for Automation (VSSD 206)										
Teaching Scheme	Examination Scheme	Credits allocated								
Theory 2h/week + End of semester Examination-60 marks Theory-2										
Practical 2 h/week										
Course Prerequisite: k	Course Prerequisite: Knowledge of 10+2 Physics.									
Course Objective:										

• To understand the basic concepts of different types of electrical machines and their												
performance.												
 To know the different methods of starting D.C motors and induction motors. To introduce the controllers for automation 												
Course Outcomes: On completion this course, students will be able to												
CO1: Select a drive for a particular application based on power rating												
CO1	CO2: Select a drive based on mechanical characteristics for a particular drive application											
CO3: Discuss the controllers used for automation												
CO3: To introduce electrical machines for automations.												
Level		Bach	Bachelor									
Cours	se											
Conte	ent:											
Unit -	I	Com	oonents o	of elect	rical D	rives –	electri	c macł	nines, p	ower co	nverter,	10 hrs
		contr	ollers - a	lynami	cs of e	lectric	drive -	torque	e equat	ion - eq	uivalent	
		value	s of driv	e paran	neters	compo	nents o	of load	torque	s types c	of load -	
		four	quadrant	t opera	tion of	a mo	tor —	steady	state	stability	– load	
		equal	ization									
Unit -	II	DC r	DC motor drives - dc motors & their performance (shunt, series, 10									10 hrs
		comp	ound, pe	ermanei	nt mag	net mo	tor, uni	iversal	motor,	dc serve	omotor)	
		– bra	aking –	regene	erative,	dyna	mic bi	raking,	plugg	ging –T	ransient	
		analysis of separately excited motor – converter control of dc motors –										
		analy	analysis of separately excited & series motor with 1-phase and 3-phase									
Ilmit	TTT	converters.									10 hm	
Unit -	111	induction motor drives – stator voltage control of induction motor – 10								10 1115		
		opera	tion wit	th unb	alanceo	- opera	non w re volt	tages	and si	ngle nh	ioaus –	
		analy	sis of in	duction	motor	fed fr	om noi	n-sinus	oidal v	oltage s	unnly –	
		stator	· freauen	cv con	trol – v		e freaue	ency of	peration	n - V/F	control.	
		contr	olled cu	rent an	d conti	olled s	lip ope	eration.				
Unit -	IV	Sync	hronous	motor	drives	- spee	d cont	rol of	synchr	onous n	notors –	10 hrs
		adjus	table fre	quency	operat	tion of	synchr	onous	motors	s – princ	iples of	
		synch	ironous	motor o	control	– volt	age soi	arce in	verter	drive wi	th open	
		loop	control	– self	-contro	olled s	ynchro	nous 1	notor	with el	ectronic	
		comn	nutation	- self-	contro	lled sy	nchror	nous m	notor d	rive usi	ng load	
		comn	nutated t	hyristo	r inver	ter.						
				T	nt.c	1 0 0 0 0	ame a== 4					
ח	ort A			ן ניז אור	Init I	and II	sment			20	Mortes	
P	alt A			$\Delta_{\rm II} I$	Init III	and II	I			20	Marks	
р	Part R			$\frac{A-11. C}{FSF \cdot 7}$	Ferm F	vam	V			60	Marks	
Text/	Reference	Books	•							00	1141KB	
1.	M.P. Poor	nia & S	S.C. Shai	rma. "F	Basic M	[echani	ical En	gineeri	ng. K	hanna P	ublishin	g House
2.	2. Strengt	h of M	aterials.	D.S. B	edi, Kl	1anna I	Publish	ing Ho	use use			00
CO/P	O mapping		,		,			- U				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	2	2	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2

**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' mapping

Laboratory Project-III (VSSD 207)

	NSQF Level 7 SEMESTER VI									
Sr.	Course	Course Name	Course type	L	Т	Р	Credits			
No	Code		(GC/SC)							
1	VSSD208	Industrial on Job Training-II	SC				30			
	Total Credit									
	SC-Skill Com	SC-Skill Component, GC-General Component								

3rd Year

Entrepreneurship Development (VSSD 301)										
Teaching Scheme	Examination Scheme	Credits alloc	ated							
Theory 3 h/week End of semester Examination-60 marks Theory-3										
Course Prerequisite: Knowledge of Entrepreneurship Development.										
Course Objective:										
Course Outcomes	Course Outcomes: On completion this course, students will be able to									
CO1: To understand	d and analyze basics of entrepreneurship.									
CO2: To study the	working principles of various sensors for a	automation.								
CO3: To introduce	electrical machines for automations.									
CO4: To acquire k	nowledge on PLC and apply for the deve	lopment of various	automated							
systems.	1									
Level	Bachelor									
Course Content:										
Unit –I	Introduction to Entrepreneurship	- Meaning and	10 hrs							
	Importance, Evolution of term 'Entrepr	eneurship, Factors								
	influencing entrepreneurship, Psycholog	ical factors, Social								
	factors, Economic factor, Characteristics	of an entrepreneur,								
	Entrepreneur and Entrepreneur, Types	of entrepreneurs,								
	New generations of entrepreneurs	hip viz. social								
	entrepreneurship.									
Unit-II	Entrepreneurial Motivation – Moti	vation, Maslow's	10 hrs							
	theory, Herjburg's theory, McG	ragor's Theory,								
	McClelland's Need – Achievement T	heory, Culture &								
	Society, Values / Ethics, Risk taking beh	avior	- 1							
Unit-III	Creativity- Creativity and entreprene	eurship, Steps in	8 hrs							
	Creativity, Innovation and inventions, Us	sing left brain skills								
	to harvest right brain ideas, Legal Protec	tion of innovation,								
	Skills of an entrepreneur, Decision ma	king and Problem								
T T * / TT	Solving (steps indecision making)	or : 1 .:	10.1							
Unit-IV	Rules And Legislation - Applicability o	t Legislation	12 hrs							
	Industries Development (Regulations) A	ct, 1951, Factories								
	Act, 1948, The Industrial Employment	(Standing Orders),								
	5.5 West Bengal Shops and Establishm	ent Act, 1963, 5.6								

	Environment (Protection) Act, 1986, 5.7 The sale of Goods											
			Ac, 19	950, 5.8	8 Indus	trial D	ispute A	Act 194	17			
Internal assessment												
	Part A			CL	A-I: Un	nit I, an	d II			20 1	Marks	
				CIA	II: Uni	it III, a	nd IV			20 1	Marks	
	Part B			E	SE: Te	rm Exa	ım			60 1	Marks	
Text/	Refere	nce Bo	oks:						-			
1.	1. Robert Hisrich and Michael Peters, Entrepreneurship, Tata Mc Graw–Hill.											
2.	2. Vasant Desai, Entrepreneurship.											
3.	Marc	J Doll	inger, I	Entrepr	eneursl	hip – S	trategie	es and]	Resourc	ces, Pear	son Edu	cation.
CO/P	O mapp	oing										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	2	3	2	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2
**'3' Morr	in the b	oox for	'High-	level' 1	nappin	g, 2 fo	r 'Medi	ium-lev	vel' ma	pping, 1	for 'Lov	w-level'
wapp	шg											

	Robotics for Industrial Automation (VSSD302)									
Teaching Scheme	Examination Scheme	Credits allocated								
Theory 3 h/week+	End of semester Examination-60 marks	Theory-4								
Tutorial 2 h/week										
Course Prerequisite: Knowledge of Industrial Robotics.										
Course Objective:										
Course Outcomes	: On completion this course, students will	be able to								
1. explain robo	t anatomy and classification (L2)									
2. analyze the a	pplications of robots in various industrial app	lication (L2)								
3. Describe diff	Ferent sensors used in robots (L3)									
4. Discuss the c	concept of grippers and force analysis (L4)									
5. Describe diff	Ferent drives and actuators used in robots (L5)									
6. Discuss the c	concept of control systems (L6)									
7. explain the r	obot programming and languages (L7)									
8. write program	nming for simple operations (L8)									
CO1: To explain ro	bot anatomy, classification, and application	ons of robots.								
CO2: To understan	d the various sensors, grippers and its sele	ection in robotics.								
CO3: To obtain ba	asic idea on working principle of various	drives, actuators and control								
concepts.										
CO4: To program	different robot operations and appreci	ate applications of robots in								
industry.										
Level	Bachelor									
Course Content:										
Unit –I	Introduction to robotics: Brief History, Basic Concepts of 10 hrs									
Robotics such as Definition, Three laws, Elements of										
	Robotic Systems i.e. Robot anatomy, DO	DF, Misunderstood								
		•								

devices etc., Classification of Robotic systems on the basis										asis			
	of various parameters such as work volume, type of drive,									rive,			
			etc.,	Assoc	iated 1	parame	ters i.	.e. res	olution	, accur	acy,		
repeatability, dexterity, compliance, RCC dev								device	etc.,				
			Introduction to Principles & Strategies of Automation,										
			Types & Levels of Automations, Need of automation,										
Industrial applications of robot.													
Unit-I	Ι		Gripp	pers an	d Sens	ors for	Robo	tics: Gi	rippers	for Robo	otics 1	0 hrs	
			- Typ	bes of	Grippe	ers, Gu	ideline	es for	design	for rob	otic		
			gripper. Force analysis for various basic gripper system										
			Senso	rs for	Robots	- Typ	es of S	Sensors	used	in Robo	tics.		
			Classi	es of									
			sensing devices, Selections of sensors. Need for sensors and										
			vision	svster	n in the	worki	ng and	contro	lofaro	obot.			
Unit-I	П		Drive	s and (Contro	l for R	obotic	s: Driv	e - Tvne	es of Dri	ves 8	hrs	
	.11		Types	of tra	nsmissi	ion svs	tems 4	Actuato	rs and	its selec	tion	ms	
			while	design	ing a r	ohot sv	stom (Control	System	$n_{\rm S}$ $T_{\rm VDC}$			
			Contr	allara	Ing a lu Introdu	ution t		d loop	oontrol	us. Type	.5 01		
I Init I	17		Drogr			d Lav				tiase D	alat 1	2 hag	
Unit-I	V		Progr		ng an m Ma	u Lai	iguage	s lor	KODO	ucs: K		2 mrs	
			Progra		g: Me		VI rod	ot pro	gramm	$\lim_{n \to \infty} w_{I}$	AII,		
SIGNAL and DELAY commands, subroutines,								nes,					
			Progra	ammin	g La	nguage	s: G	enerati	ons c	of Rot	ootic		
			Langu	lages,	Introdu	iction	to vari	ous ty	pes suc	ch as V	AL,		
			RAIL	, AML	, Pytho	n, ROS	S etc., I	Develop	pment o	of langu	ages		
			since	WAVE	E till RO	DS.							
					T 4			4					
ļ			1	CI	Inter	rnal as	sessme	ent	1	20.1			
	Part A		CIA-I: Unit I, and II							201	Marks		
-	D 4 D		CIA-II: Unit III, and IV						20 Marks				
T 4/	Part B	D.	- 1	E	SE: 16	rm Exa	m			60 Marks			
	Keiere	nce Bo	OKS:	,• ,	D 1	·	T 4 T 4		TT'11 T	- 1	(2014)		
1.	1. S. I	K. Saha	, Introd	uction t	o Kobol	tics 2e,	IAIA	McGrav	v Hills I	ducation	n (2014)		
2.	Asita	va Gho	oshal, R	obotics	: Funda	mental	concep	ts and a	inalysis,	Oxford	Univers	ity Press	
2	(2006)	D 1	F 1		(D. 1					(2010)		
3.	Dilip	Kumar	Pratiha	r, Funda	amental	s of Ro	potics, I	Narosa I	Publishi	ng House	e, (2019)		
4.	R. K.	Mittal,	Ι. J. Νε	igrath,	Robotic	s and C	ontrol,	TATA	McGrav	w Hill Pu	iblishing	; Co Ltd,	
-	New	Delhi (2	2003)		D 1			a			a 1 1	T 1	
5.	S. B. Wiley	Niku, .	Introduc	(2020)	Roboti	cs - Ar	nalysis,	Contro	l, Appli	cations,	3rd editi	on, John	
6	P Si	α SUI		2020) Iourbak	hch "I	atroduct	tion to	Autono	mous M	Iobile R	abote"	The MIT	
0.	Press.	2011	I. K. P	ouroak	11511, 11	mouue		Autono	mous iv		500ts ,		
CO/P	0 map	oing											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1								2	
CO2	3	3	3	1					1			2	
CO3	2	2	3	2					2			2	
CO4	3	3	3	2					2			2	
**:2,	in the l	ov for	'High	1 <u>ovol</u> ' 1	monnin	σ^2 for	· 'Medi	ium los	- 1, mai	ning 1	for 'L o	$\frac{1}{2}$	
Mone	in uit (JUX 101	i iigii-		парріп	g, ∠ 101	IVICU	10111-101	Ci maj	pping, I	IOI LO	w-10VCI	
Intapp	шg												

	IoT in Industrial Automation (VSSD	303)		
Teaching Scheme	Examination Scheme		Credits a	llocated
Theory 3 h/week	+ End of semester Examination-60 marks	S	Theory-4	
Practical – 2 h/ wee	k			
Course Prerequisit	e: Knowledge of IoT.			
Course Objective:	The main objective of this course is to provi	ide the	knowledge	about IoT
and concept of IoT	to the students with the applications of IoT.	Prelir	ninary ideas	s on forces
and fluid dynamics	are also essential to know.			
Course Outcomes:	On completion this course, students will be	e able t	0	
CO1: To explain co	ncept, standards, components, and applicati	ions of	ToT.	
CO2: To understan	d the various smart objects, market, environ	nment	cloud comp	puting and
real time analysis in	the context of IoT.			
CO3: To obtain ba	sic idea on working principle of various se	ensors,	actuators a	nd control
concepts, and comm	nunication protocols in context of IoT.			
CO4: To acquire kr	owledge about network communication in a	aspect	of IoT and	use of IoT
in Drones.				
Level	Bachelor			
Course Content:				
Unit –I	Introduction to Industrial IoT (IIoT)) Svst	ems: The	10 hrs
	Various Industrial Revolutions, Role of In	iternet	of Things	
	(IoT) & Industrial Internet of Things (II	oT) in	Industry,	
	Industry 4.0 revolutions, Support System			
	Smart Factories.		,	
Unit-II	Implementation systems for HoT: Senso	ors and	Actuators	10 hrs
	Process			
	automation and Data Acquisitions on	IoT	Platform,	
	Microcontrollers and Embedded PC roles i	in IIoT	, Wireless	
	Sensor nodes with Bluetooth, WiFi, and Lol	Ra Pro	otocols and	
	IoT Hub systems.			
Unit-III	IIoT Data Monitoring & Control: IoT Gat	te way	, IoT Edge	8 hrs
	Systems and It's Programming, Cloud c	compu	ting, Real	
	Time Dashboard for Data Monitoring, Da	ita Ana	alytics and	
	Predictive Maintenance with IIoT technolo			
	Cyber Physical Systems: Next Gene	eration	Sensors,	
	Collaborative Platform and Product Lifecyc	cle Ma	nagement,	
	Augmented Reality and Virtual Re	eality,	Artifical	
	Intelligence, Big Data and Advanced Analy	ysis		
Unit-IV	Industrial IoT- Applications: Healthcare	e, Pow	ver Plants,	12 hrs
	Inventory Management & Quality Control,	Plant	Safety and	
	Security (Including AR and VR safet	ty app	olications),	
	Facility Management.			
	Case Studies of HoT Systems: II	IoT a	pplication	
	development with Embedded PC base	ed de	velopment	
	boards, Development of mini Project on	new	version of	
	Operating systems and Edge developme	ent bo	oard. That	
	project should also address to the current so	ocietal	needs.	
	Internal assessment			
Part A	CIA-I: Unit I, and II		20 Marks	5

				CIA	-II: Uni	it III, a	20 Marks					
Part B ESE: Term Exam									60 I	Marks		
Text/	Text/Reference Books:											
1. The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities												
CO/P	CO/PO mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	2	3	2	2					2			2
CO4	3	3	3	2					2			2
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'												
Mapp	ing											

Introduction to control system (VSSD 304)									
Teaching Scheme	Examination Scheme	Credits alloc	ated						
Theory 3 h/week	End of semester Examination-60 marks	Theory-3							
Course Prerequisite: Knowledge of Networking.									
Course Objective: The main objective of this course is to make the students acquainted with									
the basics of contro	ol system. Preliminary ideas on control system	ystem and its applic	ations etc.						
for these in automation and programmability are also essential to know.									
Course Outcomes	: On completion this course, students will	be able to							
CO1: Perform	time domain and frequency domain analy	sis of control system	ns required						
for stabi	lity analysis.								
CO2: Design	of compensators that can be used to stabili	ze the control system	ns.						
CO3: Demons	strate the ability to apply Laplace transform	n, transfer functions,	, and block						
diagram	s for simulation and control.								
CO4: Identify	, evaluate and solve control engineering pr	oblems.							
Level	Bachelor								
Course Content:									
Unit –I	Control Systems and Components:		10 hrs						
	Systems and their representation: Basic e								
	systems, open and closed loop systems,	Electrical analogy							
	of mechanical systems, Transfer function	on, Block diagram							
	reduction techniques, Signal flow grap	ohs- AC and DC							
	servomotor, synchro-, stepper motor.								
Unit-II	Time Response Analysis and Design S	pecifications:	10 hrs						
	Time response: Time domain specification	ions, Types of test							
	input, I and II order system response,	Error coefficients,							
	Generalized error series, Steady state er	ror, P, PI, PD and							
	PID compensation.								
Unit-III	Frequency Response Analysis:		12 hrs						
	Frequency response: Bode plot, Pola	r plot, frequency							
	domain specifications, Correlation between frequency								
	domain and time domain specifications, Introduction to the								
	design of lead, lag and lag-lead compens	ators.							
Unit-IV	Concepts of Stability:		8 hrs						

	Stability Analysis: Characteristics equation, Location of roots in S plane for stability, Routh Hurwitz criterion, Root locus diagram and its application. Dominant poles Nyquist								
	stability criterion, relative stability.								
	Internal assessment								
Part A	CIA-I: Unit I, and II	20 Marks							
	CIA-II: Unit III, and IV 20 Marks								
Part B	Part BESE: Term Exam60 Marks								

- 1. Norman S. Nise, "Control Systems Engineering", 4th Ed, John Wiley, New Delhi, 2007.
- 2. K. Ogata, "Modern Control Engineering", 4th Ed, PHI, New Delhi, 2002.
- 3. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003.

Benjamin C. Kuo, "Automatic Control Systems", Pearson Education, New Delhi, 2003.

o o / i o mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1								2
CO2	3	3	3	1					1			2
CO3	3	3	3	2					2			2
CO4	3	3	3	2					2			2
**'3' in the box for 'High-level' manning 2 for 'Medium-level' manning 1 for 'Low-level'												

**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level' Mapping

Fundamental of Mechatronics (VSSD 305)								
Teaching Scheme Examination Scheme Credits allocate								
Theory 3 h/week+	heory 3 h/week+ End of semester Examination-60 marks Theory-3							
Course Prerequisite: Knowledge of Mechatronics fundamentals.								
Course Objective: The main objective of this course is to make the students acquainted with								
the basics of mechanical systems. Preliminary ideas on forces and fluid dynamics are also								
essential to know.	essential to know.							
Course Outcomes: On completion this course, students will be able to								
CO1: To introduce Real Time Operating System with GUI and Simulation of mechatronics								
with trends, methods and applications of various sensors for automation.								
CO2: To study the introduction of Signal Conditioning, hardware, Digital I/O, Analog I/P,								
filtering noise using passive component etc.								
CO3: To understand and analyze precision of mechanical system for automations.								
CO4: To acquire knowledge of electrotechnical drivers, stepper motor, wave modulation for								
automated systems.								
Level	Bachelor							
Course Content:								
Unit -I	Introduction: Definition – Trends - Contr	ol Methods: Stand 10 hrs						
	alone, PC Based (Real Time Operating S	Systems, Graphical						

User Interface, Simulation) - Applications: identification of Sensors and actuators in Washing machine, Automatic

Camera, Engine Management, SPM, Robot, CNC, FMS, CIM.									
Unit-IISignal Conditioning : Introduction – Hardware - Digital I/O, Analog input – ADC , resolution, Filtering Noise using passive components – Registors, capacitors – Amplifying signals using OP amps –Software - Digital Signal Processing – Low pass , high pass , notch filtering	0 hrs								
Unit-III Precision Mechanical Systems : Modern CNC Machines – 10 Design aspects in machine structures, guideways, feed drives, spindle and spindle bearings, measuring systems, control software and operator interface, gauging and tool monitoring. 10	0 hrs								
Unit-IV Electromechanical Drives: Relays and Solenoids - Stepper 10	0 hrs								
Motors - DC brushed motors – DC brushless motors - DC servo motors - 4-quadrant servo drives PWM's - Pulse									
Width Modulation – Variable Frequency Drives, Vector									
Drives - Drive System load calculation.									
Internal assessment									
Part A CIA-I: Unit I, and II 20 Marks CIA II: Unit III and IV 20 Marks	20 Marks								
CIA-II. Ollit III, and IV20 MarksPart BESE: Term Exam60 Marks	60 Marks								
Text/Reference Books:									
1. Mechatronics, Bolton w, Addison Wesley Longman Ltd., USA 1999, ISBN: 9780582357051									
2. Mechatronics, H.M.T., McGraw-Hill Education, New Delhi, 2000, ISBN:									
0074636435									
3. Mechatronics Electronics in production and Process, Dawson D.A., Burd N.C.,									
Loader A.J., Chapman-Hall, New Delhi, 2003, ISBN: 9780072402414									
4. Mechanical Measurement and Instrumentation, Sawhney Puneet, Sawhney	у А.К.,								
Dhanpat Kai and Sons, 2013, New Delhi									
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11	PO12								
CO1 3 2 3 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	2								
CO2 3 3 1 1	2								
CO3 2 2 3 2 2 2	2								
CO4 3 3 2 2	2								
**'3' in the box for 'High-level' mapping, 2 for 'Medium-level' mapping, 1 for 'Low-level'									
mapping									

	Open Elective (VSSD 306)				
Examination Scheme		Credits allocated			
End of semester Examin	nation-	Theory-3			
60 marks					

NSQF Level 7 SE	MESTER VI
-----------------	-----------

Sr. No	Course Code	Course Name	Course type (GC/SC)	L	Т	Р	Credits	
1	VSSD308	Industrial on Job Training-II	SC				30	
	Total Credit							
	SC-Skill Component, GC-General Component							