	CSEComputer Vision and Pattern Recognition		
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 4	End of semester Examination-60 marks	Theory-4	
h/week			
	erequisite: Students should have knowledge of Liner Algebra, Data Stru	ctures and	
Programm			
Course Obj			
	understand concepts of Digital Image		
	understand the implementations Image vision applications		
	tcomes: On completion this course, students will be able to		
	applymathematical modeling methods for low, intermediate and high-	level image	
	- cessing tasks		
2. To be able to design new algorithms to solve recent state of the art computer vision			
1	blems.		
	perform software experiments on computer vision problems and computer vision problems and computer vision problems and computer vision problems and computer vision problems are computer vision problems.	mpare their	
	formance with the state of the art.		
	build a complete system to solve a computer vision problem.		
Level	Masters		
Course Con	ntent:		
Unit –I	Introduction to Computer Vision	10 hrs	
	Definition and applications of computer vision, Historical background		
	and development, Importance and relevance in modern technology.		
Unit-II	Image Basics and Image processing Techniques	10 hrs	
	Understanding digital images, Image representation in		
	computers, Image enhancement: histogram equalization, contrast		
	stretching, Image operations (blurring, sharpening, edge detection),		
	Filtering techniques: smoothing, sharpening, edge detection,		
	Morphological operations: erosion, dilation, opening, and closing.		
Unit-III	Image Classification and Segmentation	10 hrs	
	Feature Extraction: Introduction to feature extraction techniques,		
	Feature descriptors: Histogram of Oriented Gradients (HOG),		
	ScaleInvariant Feature, Image Classification: SVM, Decision Trees,		
	Gradient Boosting Machines, Naïve Bayes, Image Segmentation:		
	Thresholding, Region-based segmentation, Edgebased segmentation,		
	Semantic segmentation, Instance segmentation.		
Unit-IV	Convolutional Neural Networks	10 hrs	
	Basic architecture of CNNs: Convolutional layers, pooling layers,	-	
	Activation functions, Tools and Libraries: Introduction to deep		
	learning frameworks, Hands-on coding exercises using high-level		
	APIs (Keras), Training CNNs-Dataset preparation and preprocessing,		
	Loss functions (cross- entropy), Optimizers (e.g., SGD, Adam),		
	Back-propagation in CNNs, Applications of CNNs in Computer		
	Vision-Image classification, Object detection, Semantic		
	segmentation.		
		l	
Internal assessment			
Part	CIA-I: Unit I, and II	20 Marks	
Α		20.14	
	CIA-II: Unit III, and IV	20 Marks	

Part B	
--------	--

Text/Reference Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
- 3. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 4. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006
- 5. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison- Wesley, 1992.

CSE464: System Software

B.Tech. (CSE) Elective course

Credits 04 (3L+1T+0P)

Learning Objectives:

- 1. To understand the relationship between system software and machine architecture.
- 2. To understand the processing of an HLL program for execution on a computer.
- 3. To understand the process of Assembling a program
- 4. To understand the process of Loading and Linking a program
- 5. To understand the process of Compiling a program.

Unit I:

Background: System software and Machine Architectures, The Simplifies Instructional Computer (SIC & SIC/XE), Traditional CISC machines, RISC machines.

Assemblers:Basic Assembler functions, Machine- Dependent Assembler features, machine-Independent Assembler features, Assembler design options, Implementation examples.

Unit II:

Loaders & Linkers:Basic loader functions, Machine-dependent Loader features, machineindependent Loader features, Loader design options, Implementation examples.

Unit III:

Macro Processors: Basic Macro Processor functions, Machine-Independent Macro Processor features, Macro processor design options, implementation examples.

Unit IV:

Compilers: Basic Compiler functions, Machine-dependent Compiler features, Machine-independent Compiler features, Compiler design options, Implementation examples.

Reference books:

1. Leland L. Beck, "System Software – An Introduction to Systems Programming", 3rd Edition, Pearson Education Asia, 2000.

2. SantanuChattopadhyay, "System Software", Prentice-Hall India, 2007.

3. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers: Principles, Techniques, and Tools", 2nd Edition, Pearson Education Asia.